BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22763268)

  • 1. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments.
    Sundström M; Tjäder I; Rooyackers O; Wernerman J
    Clin Nutr; 2013 Feb; 32(1):118-21. PubMed ID: 22763268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: which device compares best with the Deltatrac II(®)? A prospective observational study.
    Graf S; Karsegard VL; Viatte V; Heidegger CP; Fleury Y; Pichard C; Genton L
    Clin Nutr; 2015 Feb; 34(1):60-5. PubMed ID: 24485773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients.
    Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J
    Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect Calorimetry in Mechanically Ventilated Patients: A Prospective, Randomized, Clinical Validation of 2 Devices Against a Gold Standard.
    Allingstrup MJ; Kondrup J; Perner A; Christensen PL; Jensen TH; Henneberg SW
    JPEN J Parenter Enteral Nutr; 2017 Nov; 41(8):1272-1277. PubMed ID: 27488830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximation of Resting Energy Expenditure in Intensive Care Unit Patients Using the SenseWear Bracelet: A Comparison With Indirect Calorimetry.
    Sundström M; Mehrabi M; Tjäder I; Rooyackers O; Hammarqvist F
    JPEN J Parenter Enteral Nutr; 2017 Aug; 41(6):976-980. PubMed ID: 26979281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect calorimetry in critically ill mechanically ventilated patients: Comparison of E-sCOVX with the deltatrac.
    Stapel SN; Weijs PJM; Girbes ARJ; Oudemans-van Straaten HM
    Clin Nutr; 2019 Oct; 38(5):2155-2160. PubMed ID: 30245021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of carbon dioxide production (VCO
    Kagan I; Zusman O; Bendavid I; Theilla M; Cohen J; Singer P
    Crit Care; 2018 Aug; 22(1):186. PubMed ID: 30075796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the Beacon and Quark indirect calorimetry devices to measure resting energy expenditure in ventilated ICU patients.
    Slingerland-Boot H; Adhikari S; Mensink MR; van Zanten ARH
    Clin Nutr ESPEN; 2022 Apr; 48():370-377. PubMed ID: 35331516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of an indirect calorimeter using n-of-1 methodology.
    Frankenfield DC; Ashcraft CM; Wood C; Chinchilli VM
    Clin Nutr; 2016 Feb; 35(1):163-168. PubMed ID: 25707909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods.
    Black C; Grocott MP; Singer M
    Br J Anaesth; 2015 Feb; 114(2):261-8. PubMed ID: 25354946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External Validation with Accuracy Confounders of VCO
    Briassoulis P; Ilia S; Briassouli E; Briassoulis G
    Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Mindray metabolic system and the GE S/5 metabolic system: Indirect calorimetry in critically ill, mechanically ventilated patients.
    Fishman G; Kagan I; Robinson E; Singer P
    Nutrition; 2022; 99-100():111632. PubMed ID: 35588651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of metabolic monitors in critically ill, ventilated patients.
    Singer P; Pogrebetsky I; Attal-Singer J; Cohen J
    Nutrition; 2006; 22(11-12):1077-86. PubMed ID: 16973331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Feeding on Resting Metabolic Rate and Gas Exchange in Critically Ill Patients.
    Frankenfield DC
    JPEN J Parenter Enteral Nutr; 2019 Feb; 43(2):226-233. PubMed ID: 30070736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of ventilator-derived VCO
    Kerklaan D; Augustus ME; Hulst JM; van Rosmalen J; Verbruggen SCAT; Joosten KFM
    Clin Nutr; 2017 Apr; 36(2):452-457. PubMed ID: 26803170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The clinical evaluation of the new indirect calorimeter developed by the ICALIC project.
    Oshima T; Delsoglio M; Dupertuis YM; Singer P; De Waele E; Veraar C; Heidegger CP; Wernermann J; Wischmeyer PE; Berger MM; Pichard C
    Clin Nutr; 2020 Oct; 39(10):3105-3111. PubMed ID: 32046881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predictive equation for determination of resting energy expenditure in mechanically ventilated patients.
    Sherman MS
    Chest; 1994 Feb; 105(2):544-9. PubMed ID: 8306760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting energy expenditure measured by indirect calorimetry in mechanically ventilated patients during ICU stay and post-ICU hospitalization: A prospective observational study.
    Moonen HPFX; Hermans AJH; Bos AE; Snaterse I; Stikkelman E; van Zanten FJL; van Exter SH; van de Poll MCG; van Zanten ARH
    J Crit Care; 2023 Dec; 78():154361. PubMed ID: 37451114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Cosmed K4 b(2) and the Deltatrac II metabolic cart in measuring resting energy expenditure in adults.
    Littlewood RA; White MS; Bell KL; Davies PS; Cleghorn GJ; Grote R
    Clin Nutr; 2002 Dec; 21(6):491-7. PubMed ID: 12468369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement--a two-center study.
    Mehta NM; Smallwood CD; Joosten KF; Hulst JM; Tasker RC; Duggan CP
    Clin Nutr; 2015 Feb; 34(1):151-5. PubMed ID: 24636151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.