BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22763289)

  • 1. Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems.
    Vital M; Dignum M; Magic-Knezev A; Ross P; Rietveld L; Hammes F
    Water Res; 2012 Oct; 46(15):4665-76. PubMed ID: 22763289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
    Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T
    Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid, cultivation-independent assessment of microbial viability in drinking water.
    Berney M; Vital M; Hülshoff I; Weilenmann HU; Egli T; Hammes F
    Water Res; 2008 Aug; 42(14):4010-8. PubMed ID: 18694583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments.
    Hammes F; Goldschmidt F; Vital M; Wang Y; Egli T
    Water Res; 2010 Jul; 44(13):3915-23. PubMed ID: 20605621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.
    Lautenschlager K; Hwang C; Liu WT; Boon N; Köster O; Vrouwenvelder H; Egli T; Hammes F
    Water Res; 2013 Jun; 47(9):3015-25. PubMed ID: 23557697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.
    Lautenschlager K; Boon N; Wang Y; Egli T; Hammes F
    Water Res; 2010 Sep; 44(17):4868-77. PubMed ID: 20696451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination.
    Velten S; Hammes F; Boller M; Egli T
    Water Res; 2007 May; 41(9):1973-83. PubMed ID: 17343893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems.
    Liu G; Van der Mark EJ; Verberk JQ; Van Dijk JC
    Biomed Res Int; 2013; 2013():595872. PubMed ID: 23819117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.
    Van Nevel S; Koetzsch S; Proctor CR; Besmer MD; Prest EI; Vrouwenvelder JS; Knezev A; Boon N; Hammes F
    Water Res; 2017 Apr; 113():191-206. PubMed ID: 28214393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The ATP concentration of drinking water compared to the colony count].
    Stutz W; Leki G; Lopez Pila JM
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1986 Jul; 182(4):421-9. PubMed ID: 3096023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
    Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS
    PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.
    Prest EI; El-Chakhtoura J; Hammes F; Saikaly PE; van Loosdrecht MC; Vrouwenvelder JS
    Water Res; 2014 Oct; 63():179-89. PubMed ID: 25000200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis.
    Hammes F; Broger T; Weilenmann HU; Vital M; Helbing J; Bosshart U; Huber P; Odermatt RP; Sonnleitner B
    Cytometry A; 2012 Jun; 81(6):508-16. PubMed ID: 22489027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods.
    Liu G; Ling FQ; Magic-Knezev A; Liu WT; Verberk JQ; Van Dijk JC
    Water Res; 2013 Jun; 47(10):3523-33. PubMed ID: 23618316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial community structure and biomass in developing drinking water biofilms.
    Keinänen MM; Martikainen PJ; Kontro MH
    Can J Microbiol; 2004 Mar; 50(3):183-91. PubMed ID: 15105885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-cytometric quantification of microbial cells on sand from water biofilters.
    Vignola M; Werner D; Hammes F; King LC; Davenport RJ
    Water Res; 2018 Oct; 143():66-76. PubMed ID: 29940363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ATP-based method for monitoring the microbiological drinking water quality in a distribution network.
    Delahaye E; Welté B; Levi Y; Leblon G; Montiel A
    Water Res; 2003 Sep; 37(15):3689-96. PubMed ID: 12867336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.
    Prest EI; Hammes F; Kötzsch S; van Loosdrecht MC; Vrouwenvelder JS
    Water Res; 2013 Dec; 47(19):7131-42. PubMed ID: 24183559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems.
    Weinrich LA; Jjemba PK; Giraldo E; LeChevallier MW
    Water Res; 2010 Oct; 44(18):5367-75. PubMed ID: 20619432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The occurrence of aeromonads in a drinking water supply system].
    Stelzer W; Jacob J; Feuerpfeil I; Schulze E
    Zentralbl Mikrobiol; 1992; 147(3-4):231-5. PubMed ID: 1609555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.