BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22763294)

  • 1. Variability in phosphorus binding by aluminum in alum treated lakes explained by lake morphology and aluminum dose.
    Huser BJ
    Water Res; 2012 Oct; 46(15):4697-704. PubMed ID: 22763294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple model for predicting aluminum bound phosphorus formation and internal loading reduction in lakes after aluminum addition to lake sediment.
    Huser BJ; Pilgrim KM
    Water Res; 2014 Apr; 53():378-85. PubMed ID: 24565172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes.
    Lake BA; Coolidge KM; Norton SA; Amirbahman A
    Sci Total Environ; 2007 Feb; 373(2-3):534-41. PubMed ID: 17234258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes.
    Agstam-Norlin O; Lannergård EE; Futter MN; Huser BJ
    Water Res; 2020 Oct; 185():116150. PubMed ID: 33086462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality.
    Huser BJ; Egemose S; Harper H; Hupfer M; Jensen H; Pilgrim KM; Reitzel K; Rydin E; Futter M
    Water Res; 2016 Jun; 97():122-32. PubMed ID: 26250754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum.
    Reitzel K; Jensen HS; Egemose S
    Water Res; 2013 Mar; 47(3):1409-20. PubMed ID: 23273857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting phosphate adsorption to aluminum in lake water: implications for lake restoration.
    de Vicente I; Jensen HS; Andersen FØ
    Sci Total Environ; 2008 Jan; 389(1):29-36. PubMed ID: 17900664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of aluminum dosing methods for reducing sediment phosphorus release in lakes.
    Kuster AC; Kuster AT; Huser BJ
    J Environ Manage; 2020 May; 261():110195. PubMed ID: 32148269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aluminum treatment on phosphorus, carbon, and nitrogen distribution in lake sediment: a 31P NMR study.
    Reitzel K; Ahlgren J; Gogoll A; Rydin E
    Water Res; 2006 Feb; 40(4):647-54. PubMed ID: 16427681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes.
    Huser BJ; Futter M; Lee JT; Perniel M
    Water Res; 2016 Jun; 97():142-52. PubMed ID: 26298078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for comparative evaluation of whole-lake and inflow alum treatment.
    Pilgrim KM; Huser BJ; Brezonik PL
    Water Res; 2007 Mar; 41(6):1215-24. PubMed ID: 17296215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium.
    Auvray F; van Hullebusch ED; Deluchat V; Baudu M
    Water Res; 2006 Aug; 40(14):2713-9. PubMed ID: 16814358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment.
    Reitzel K; Hansen J; Andersen FO; Hansen KS; Jensen HS
    Environ Sci Technol; 2005 Jun; 39(11):4134-40. PubMed ID: 15984792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical lake restoration products: sediment stability and phosphorus dynamics.
    Egemose S; Reitzel K; Andersen FØ; Flindt MR
    Environ Sci Technol; 2010 Feb; 44(3):985-91. PubMed ID: 20055487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany).
    Lewandowski J; Schauser I; Hupfer M
    Water Res; 2003 Jul; 37(13):3194-204. PubMed ID: 14509707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment on the effects of aluminum-modified clay in inactivating internal phosphorus in deep eutrophic reservoirs.
    Wang J; Chen J; Chen Q; Yang H; Zeng Y; Yu P; Jin Z
    Chemosphere; 2019 Jan; 215():657-667. PubMed ID: 30347360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus sorption and potential phosphorus storage in sediments of Lake Istokpoga and the upper chain of lakes, Florida, USA.
    Belmont MA; White JR; Reddy KR
    J Environ Qual; 2009; 38(3):987-96. PubMed ID: 19329687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.