BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22764089)

  • 41. Factors determining the efficacy of nuclear delivery of antisense oligonucleotides by gold nanoparticles.
    Liu Y; Franzen S
    Bioconjug Chem; 2008 May; 19(5):1009-16. PubMed ID: 18393455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells.
    Hao X; Wu J; Shan Y; Cai M; Shang X; Jiang J; Wang H
    J Phys Condens Matter; 2012 Apr; 24(16):164207. PubMed ID: 22466161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption.
    Pal S; Mitra K; Azmi S; Ghosh JK; Chakraborty TK
    Org Biomol Chem; 2011 Jul; 9(13):4806-10. PubMed ID: 21590000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The interaction between casein micelles and gold nanoparticles.
    Liu Y; Guo R
    J Colloid Interface Sci; 2009 Apr; 332(1):265-9. PubMed ID: 19131073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold nanoparticles: emerging paradigm for targeted drug delivery system.
    Kumar A; Zhang X; Liang XJ
    Biotechnol Adv; 2013; 31(5):593-606. PubMed ID: 23111203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging.
    Shang L; Azadfar N; Stockmar F; Send W; Trouillet V; Bruns M; Gerthsen D; Nienhaus GU
    Small; 2011 Sep; 7(18):2614-20. PubMed ID: 21809441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa.
    Husseiny MI; El-Aziz MA; Badr Y; Mahmoud MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1003-6. PubMed ID: 17084659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line.
    Ahmed M; Deng Z; Narain R
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1980-7. PubMed ID: 20355823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell penetrating peptide-mediated systemic siRNA delivery to the liver.
    Hayashi Y; Yamauchi J; Khalil IA; Kajimoto K; Akita H; Harashima H
    Int J Pharm; 2011 Oct; 419(1-2):308-13. PubMed ID: 21827843
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gold nanoparticle uptake in whole cells in liquid examined by environmental scanning electron microscopy.
    Peckys DB; de Jonge N
    Microsc Microanal; 2014 Feb; 20(1):189-97. PubMed ID: 24444043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides.
    Rytkönen J; Arukuusk P; Xu W; Kurrikoff K; Langel U; Lehto VP; Närvänen A
    Mol Pharm; 2014 Feb; 11(2):382-90. PubMed ID: 24341621
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photothermal ablation of amyloid aggregates by gold nanoparticles.
    Triulzi RC; Dai Q; Zou J; Leblanc RM; Gu Q; Orbulescu J; Huo Q
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):200-8. PubMed ID: 18262396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.
    Acuna GP; Bucher M; Stein IH; Steinhauer C; Kuzyk A; Holzmeister P; Schreiber R; Moroz A; Stefani FD; Liedl T; Simmel FC; Tinnefeld P
    ACS Nano; 2012 Apr; 6(4):3189-95. PubMed ID: 22439823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production.
    Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM
    Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sonochemical intercalation of preformed gold nanoparticles into multilayered clays.
    Belova V; Möhwald H; Shchukin DG
    Langmuir; 2008 Sep; 24(17):9747-53. PubMed ID: 18652497
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview.
    Shukla R; Bansal V; Chaudhary M; Basu A; Bhonde RR; Sastry M
    Langmuir; 2005 Nov; 21(23):10644-54. PubMed ID: 16262332
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent.
    Podsiadlo P; Sinani VA; Bahng JH; Kam NW; Lee J; Kotov NA
    Langmuir; 2008 Jan; 24(2):568-74. PubMed ID: 18052300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models.
    Chou LY; Chan WC
    Adv Healthc Mater; 2012 Nov; 1(6):714-21. PubMed ID: 23184822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.