These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22764234)
1. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development. Friel K; Chakrabarty S; Kuo HC; Martin J J Neurosci; 2012 Jul; 32(27):9265-76. PubMed ID: 22764234 [TBL] [Abstract][Full Text] [Related]
2. Motor Cortex Activity Organizes the Developing Rubrospinal System. Williams PT; Martin JH J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884 [TBL] [Abstract][Full Text] [Related]
3. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity. Chakrabarty S; Friel KM; Martin JH J Neurophysiol; 2009 Mar; 101(3):1283-93. PubMed ID: 19091920 [TBL] [Abstract][Full Text] [Related]
4. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. Salimi I; Friel KM; Martin JH J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946 [TBL] [Abstract][Full Text] [Related]
5. Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits. Chakrabarty S; Martin JH J Neurosci; 2010 Feb; 30(6):2277-88. PubMed ID: 20147554 [TBL] [Abstract][Full Text] [Related]
6. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury. Song W; Amer A; Ryan D; Martin JH Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732 [TBL] [Abstract][Full Text] [Related]
7. Bilateral activity-dependent interactions in the developing corticospinal system. Friel KM; Martin JH J Neurosci; 2007 Oct; 27(41):11083-90. PubMed ID: 17928450 [TBL] [Abstract][Full Text] [Related]
8. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Anderson KD; Gunawan A; Steward O Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253 [TBL] [Abstract][Full Text] [Related]
9. Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain. Friel KM; Chakrabarty S; Martin JH Dev Med Child Neurol; 2013 Nov; 55 Suppl 4():27-31. PubMed ID: 24237276 [TBL] [Abstract][Full Text] [Related]
10. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System. Gennaro M; Mattiello A; Mazziotti R; Antonelli C; Gherardini L; Guzzetta A; Berardi N; Cioni G; Pizzorusso T Front Neural Circuits; 2017; 11():47. PubMed ID: 28706475 [TBL] [Abstract][Full Text] [Related]
11. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats. Wen TC; Lall S; Pagnotta C; Markward J; Gupta D; Ratnadurai-Giridharan S; Bucci J; Greenwald L; Klugman M; Hill NJ; Carmel JB Front Neural Circuits; 2018; 12():28. PubMed ID: 29706871 [TBL] [Abstract][Full Text] [Related]
12. Activity- and use-dependent plasticity of the developing corticospinal system. Martin JH; Friel KM; Salimi I; Chakrabarty S Neurosci Biobehav Rev; 2007; 31(8):1125-35. PubMed ID: 17599407 [TBL] [Abstract][Full Text] [Related]
13. Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats. Maldonado MA; Allred RP; Felthauser EL; Jones TA Neurorehabil Neural Repair; 2008; 22(3):250-61. PubMed ID: 18073324 [TBL] [Abstract][Full Text] [Related]
14. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Kanagal SG; Muir GD Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552 [TBL] [Abstract][Full Text] [Related]
15. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. Maier IC; Baumann K; Thallmair M; Weinmann O; Scholl J; Schwab ME J Neurosci; 2008 Sep; 28(38):9386-403. PubMed ID: 18799672 [TBL] [Abstract][Full Text] [Related]
16. Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools. Williams PT; Kim S; Martin JH J Neurosci; 2014 Mar; 34(12):4432-41. PubMed ID: 24647962 [TBL] [Abstract][Full Text] [Related]
17. Delayed rehabilitation lessens brain injury and improves recovery after intracerebral hemorrhage in rats. Auriat AM; Colbourne F Brain Res; 2009 Jan; 1251():262-8. PubMed ID: 19059222 [TBL] [Abstract][Full Text] [Related]
18. Impairments in prehension produced by early postnatal sensory motor cortex activity blockade. Martin JH; Donarummo L; Hacking A J Neurophysiol; 2000 Feb; 83(2):895-906. PubMed ID: 10669503 [TBL] [Abstract][Full Text] [Related]
19. Advantages of delaying the onset of rehabilitative reaching training in rats with incomplete spinal cord injury. Krajacic A; Ghosh M; Puentes R; Pearse DD; Fouad K Eur J Neurosci; 2009 Feb; 29(3):641-51. PubMed ID: 19222562 [TBL] [Abstract][Full Text] [Related]
20. Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Adkins DL; Hsu JE; Jones TA Exp Neurol; 2008 Jul; 212(1):14-28. PubMed ID: 18448100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]