These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22764486)
1. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity. Philpott SM; Pardee GL; Gonthier DJ Ecology; 2012 May; 93(5):992-1001. PubMed ID: 22764486 [TBL] [Abstract][Full Text] [Related]
2. Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high-shade and low-shade habitat. Pardee GL; Philpott SM Environ Entomol; 2011 Jun; 40(3):581-8. PubMed ID: 22251635 [TBL] [Abstract][Full Text] [Related]
3. Molecular Markers Detect Cryptic Predation on Coffee Berry Borer (Coleoptera: Curculionidae) by Silvanid and Laemophloeid Flat Bark Beetles (Coleoptera: Silvanidae, Laemophloeidae) in Coffee Beans. Sim SB; Yoneishi NM; Brill E; Geib SM; Follett PA J Econ Entomol; 2016 Feb; 109(1):100-5. PubMed ID: 26487745 [TBL] [Abstract][Full Text] [Related]
4. Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity. Philpott SM; Perfecto I; Vandermeer J J Anim Ecol; 2008 May; 77(3):505-11. PubMed ID: 18248385 [TBL] [Abstract][Full Text] [Related]
5. Hypothenemus hampei (Coleoptera: Curculionidae) and its interactions with Azteca instabilis and Pheidole synanthropica (Hymenoptera: Formicidae) in a shade coffee agroecosystem. Jiménez-Soto E; Cruz-Rodríguez JA; Vandermeer J; Perfecto I Environ Entomol; 2013 Oct; 42(5):915-24. PubMed ID: 24331603 [TBL] [Abstract][Full Text] [Related]
6. Keystone mutualism strengthens top-down effects by recruiting large-bodied ants. Clark RE; Singer MS Oecologia; 2018 Mar; 186(3):601-610. PubMed ID: 29305657 [TBL] [Abstract][Full Text] [Related]
7. Environmental and habitat drivers of relative abundance for a suite of azteca-attacking Pseudacteon phorid flies. Reese KM; Philpott SM Environ Entomol; 2012 Oct; 41(5):1107-14. PubMed ID: 23068166 [TBL] [Abstract][Full Text] [Related]
8. Pseudacteon Phorid Flies: Host Specificity and Impacts on Solenopsis Fire Ants. Chen L; Fadamiro HY Annu Rev Entomol; 2018 Jan; 63():47-67. PubMed ID: 28938082 [TBL] [Abstract][Full Text] [Related]
9. Behavioral strategies of phorid parasitoids and responses of their hosts, the leaf-cutting ants. Elizalde L; Folgarait PJ J Insect Sci; 2012; 12():135. PubMed ID: 23448343 [TBL] [Abstract][Full Text] [Related]
10. May furtive predation provide enemy free space in ant-tended aphid colonies? Guénard B; Dumont F; Fréchette B; Francoeur A; Lucas É PLoS One; 2018; 13(10):e0204019. PubMed ID: 30303985 [TBL] [Abstract][Full Text] [Related]
11. Multiple interaction types determine the impact of ant predation of caterpillars in a forest community. Clark RE; Farkas TE; Lichter-Marck I; Johnson ER; Singer MS Ecology; 2016 Dec; 97(12):3379-3388. PubMed ID: 27861790 [TBL] [Abstract][Full Text] [Related]
12. Cuticular Hydrocarbon Cues Are Used for Host Acceptance by Pseudacteon spp. Phorid Flies that Attack Azteca sericeasur Ants. Mathis KA; Tsutsui ND J Chem Ecol; 2016 Apr; 42(4):286-93. PubMed ID: 27130489 [TBL] [Abstract][Full Text] [Related]
13. Predator diversity and identity drive interaction strength and trophic cascades in a food web. Otto SB; Berlow EL; Rank NE; Smiley J; Brose U Ecology; 2008 Jan; 89(1):134-44. PubMed ID: 18376555 [TBL] [Abstract][Full Text] [Related]
14. Fire ant alarm pheromone and venom alkaloids act in concert to attract parasitic phorid flies, Pseudacteon spp. Sharma KR; Fadamiro HY J Insect Physiol; 2013 Nov; 59(11):1119-24. PubMed ID: 24035750 [TBL] [Abstract][Full Text] [Related]
15. Biological control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) by Phymastichus coffea (Hymenoptera: Eulophidae) in Colombia. Jaramillo J; Bustillo AE; Montoya EC; Borgemeister C Bull Entomol Res; 2005 Oct; 95(5):467-72. PubMed ID: 16197567 [TBL] [Abstract][Full Text] [Related]
16. Behavioral diversity of predatory arboreal ants in coffee agroecosystems. Philpott SM; Perfecto I; Vandermeer J Environ Entomol; 2008 Feb; 37(1):181-91. PubMed ID: 18348809 [TBL] [Abstract][Full Text] [Related]
17. Predation of Coffee Berry Borer by a Green Lacewing. Botti JMC; Martins EF; Franzin ML; Venzon M Neotrop Entomol; 2022 Feb; 51(1):160-163. PubMed ID: 34255264 [TBL] [Abstract][Full Text] [Related]
18. Spatial scale and density dependence in a host parasitoid system: an arboreal ant, Azteca instabilis, and its Pseudacteon phorid parasitoid. Philpott SM; Perfecto I; Vandermeer J; Uno S Environ Entomol; 2009 Jun; 38(3):790-6. PubMed ID: 19508788 [TBL] [Abstract][Full Text] [Related]
19. Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants. Mathis KA; Tsutsui ND Proc Biol Sci; 2016 Aug; 283(1836):. PubMed ID: 27512148 [TBL] [Abstract][Full Text] [Related]
20. Molecular diagnosis of a previously unreported predator-prey association in coffee: Karnyothrips flavipes Jones (Thysanoptera: Phlaeothripidae) predation on the coffee berry borer. Jaramillo J; Chapman EG; Vega FE; Harwood JD Naturwissenschaften; 2010 Mar; 97(3):291-8. PubMed ID: 20094879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]