BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22764495)

  • 1. The influence of host diversity and composition on epidemiological patterns at multiple spatial scales.
    Moore SM; Borer ET
    Ecology; 2012 May; 93(5):1095-105. PubMed ID: 22764495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition.
    Moore SM; Manore CA; Bokil VA; Borer ET; Hosseini PR
    Bull Math Biol; 2011 Nov; 73(11):2707-30. PubMed ID: 21505932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Richness and composition of niche-assembled viral pathogen communities.
    Seabloom EW; Borer ET; Lacroix C; Mitchell CE; Power AG
    PLoS One; 2013; 8(2):e55675. PubMed ID: 23468848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agroecological and environmental factors influence Barley yellow dwarf viruses in grasslands in the US Pacific Northwest.
    Ingwell LL; Lacroix C; Rhoades PR; Karasev AV; Bosque-Pérez NA
    Virus Res; 2017 Sep; 241():185-195. PubMed ID: 28419861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local context drives infection of grasses by vector-borne generalist viruses.
    Borer ET; Seabloom EW; Mitchell CE; Power AG
    Ecol Lett; 2010 Jul; 13(7):810-8. PubMed ID: 20482583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-random biodiversity loss underlies predictable increases in viral disease prevalence.
    Lacroix C; Jolles A; Seabloom EW; Power AG; Mitchell CE; Borer ET
    J R Soc Interface; 2014 Mar; 11(92):20130947. PubMed ID: 24352672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viral diversity and prevalence gradients in North American Pacific Coast grasslands.
    Seabloom EW; Borer ET; Mitchell CE; Power AG
    Ecology; 2010 Mar; 91(3):721-32. PubMed ID: 20426331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aphid fecundity and grassland invasion: invader life history is the key.
    Borer ET; Adams VT; Engler GA; Adams AL; Schumann CB; Seabloom EW
    Ecol Appl; 2009 Jul; 19(5):1187-96. PubMed ID: 19688926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands.
    Power AG; Borer ET; Hosseini P; Mitchell CE; Seabloom EW
    Virus Res; 2011 Aug; 159(2):95-100. PubMed ID: 21641945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Within-Host Niche Differences and Fitness Trade-offs Promote Coexistence of Plant Viruses.
    Mordecai EA; Gross K; Mitchell CE
    Am Nat; 2016 Jan; 187(1):E13-26. PubMed ID: 27277413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).
    Malmstrom CM; Bigelow P; Trębicki P; Busch AK; Friel C; Cole E; Abdel-Azim H; Phillippo C; Alexander HM
    Virus Res; 2017 Sep; 241():172-184. PubMed ID: 28688850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity and composition of viral communities: coinfection of barley and cereal yellow dwarf viruses in California grasslands.
    Seabloom EW; Hosseini PR; Power AG; Borer ET
    Am Nat; 2009 Mar; 173(3):E79-98. PubMed ID: 19183066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses.
    Malmstrom CM; McCullough AJ; Johnson HA; Newton LA; Borer ET
    Oecologia; 2005 Aug; 145(1):153-64. PubMed ID: 15875144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host Abundance and Identity Determine the Epidemiology and Evolution of a Generalist Plant Virus in a Wild Ecosystem.
    Rodríguez-Nevado C; G Gavilán R; Pagán I
    Phytopathology; 2020 Jan; 110(1):94-105. PubMed ID: 31589103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predators indirectly reduce the prevalence of an insect-vectored plant pathogen independent of predator diversity.
    Long EY; Finke DL
    Oecologia; 2015 Apr; 177(4):1067-74. PubMed ID: 25561170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus.
    Tamborindeguy C; Bereman MS; DeBlasio S; Igwe D; Smith DM; White F; MacCoss MJ; Gray SM; Cilia M
    PLoS One; 2013; 8(8):e71620. PubMed ID: 23951206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium-mediated infection of whole plants by yellow dwarf viruses.
    Yoon JY; Choi SK; Palukaitis P; Gray SM
    Virus Res; 2011 Sep; 160(1-2):428-34. PubMed ID: 21763366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiology and integrated management of persistently transmitted aphid-borne viruses of legume and cereal crops in West Asia and North Africa.
    Makkouk KM; Kumari SG
    Virus Res; 2009 May; 141(2):209-18. PubMed ID: 19152820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aphid transmission of plant viruses.
    Gray SM
    Curr Protoc Microbiol; 2008 Aug; Chapter 16():Unit 16B.1.1-16B.1.10. PubMed ID: 18729054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Spatial Metagenomics to Molecular Characterization of Plant Viruses: A Geminivirus Case Study.
    Claverie S; Bernardo P; Kraberger S; Hartnady P; Lefeuvre P; Lett JM; Galzi S; Filloux D; Harkins GW; Varsani A; Martin DP; Roumagnac P
    Adv Virus Res; 2018; 101():55-83. PubMed ID: 29908594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.