These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22764889)

  • 1. Versatile strategy for biochemical, electrochemical and immunoarray detection of protein phosphorylations.
    Martić S; Gabriel M; Turowec JP; Litchfield DW; Kraatz HB
    J Am Chem Soc; 2012 Oct; 134(41):17036-45. PubMed ID: 22764889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations.
    Martić S; Labib M; Kraatz HB
    Analyst; 2011 Jan; 136(1):107-12. PubMed ID: 21042631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase.
    Xu X; Nie Z; Chen J; Fu Y; Li W; Shen Q; Yao S
    Chem Commun (Camb); 2009 Dec; (45):6946-8. PubMed ID: 19904356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical approaches towards unravelling kinase-mediated signalling pathways.
    Hodgson DR; Schröder M
    Chem Soc Rev; 2011 Mar; 40(3):1211-23. PubMed ID: 21152652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro protein kinase activity measurement by flow cytometry.
    Bernsteel DJ; Roman DL; Neubig RR
    Anal Biochem; 2008 Dec; 383(2):180-5. PubMed ID: 18796290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes.
    Xu S; Liu Y; Wang T; Li J
    Anal Chem; 2010 Nov; 82(22):9566-72. PubMed ID: 20977199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads.
    Tang D; Su B; Tang J; Ren J; Chen G
    Anal Chem; 2010 Feb; 82(4):1527-34. PubMed ID: 20095621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput, nonisotopic, competitive binding assay for kinases using nonselective inhibitor probes (ED-NSIP).
    Vainshtein I; Silveria S; Kaul P; Rouhani R; Eglen RM; Wang J
    J Biomol Screen; 2002 Dec; 7(6):507-14. PubMed ID: 14599348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods.
    Minor LK
    Curr Opin Drug Discov Devel; 2003 Sep; 6(5):760-5. PubMed ID: 14579525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches for monitoring signal transduction changes in normal and cancer cells.
    Dent P; Hylemon PB; Grant S; Fisher PB
    Methods Mol Biol; 2007; 383():259-76. PubMed ID: 18217691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticle-based electrochemical detection of protein phosphorylation.
    Kerman K; Chikae M; Yamamura S; Tamiya E
    Anal Chim Acta; 2007 Apr; 588(1):26-33. PubMed ID: 17386790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase biochemistry and drug discovery.
    Schwartz PA; Murray BW
    Bioorg Chem; 2011 Dec; 39(5-6):192-210. PubMed ID: 21872901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-gel kinase assay as a method to identify kinase substrates.
    Wooten MW
    Sci STKE; 2002 Oct; 2002(153):pl15. PubMed ID: 12372853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.
    Martić S; Rains MK; Freeman D; Kraatz HB
    Bioconjug Chem; 2011 Aug; 22(8):1663-72. PubMed ID: 21696155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphorylation analysis based on proton release detection: potential tools for drug discovery.
    Bhalla N; Di Lorenzo M; Pula G; Estrela P
    Biosens Bioelectron; 2014 Apr; 54():109-14. PubMed ID: 24252767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical kinomics: a powerful strategy for target deconvolution.
    Kim DH; Sim T
    BMB Rep; 2010 Nov; 43(11):711-9. PubMed ID: 21110913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical strategy for sensing protein phosphorylation.
    Miao P; Ning L; Li X; Li P; Li G
    Bioconjug Chem; 2012 Jan; 23(1):141-5. PubMed ID: 22148592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of the linker in ferrocene-ATP conjugates: monitoring protein kinase catalyzed phosphorylations electrochemically.
    Martić S; Labib M; Freeman D; Kraatz PH
    Chemistry; 2011 Jun; 17(24):6744-52. PubMed ID: 21542035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed electrochemical immunoassay of phosphorylated proteins based on enzyme-functionalized gold nanorod labels and electric field-driven acceleration.
    Du D; Wang J; Lu D; Dohnalkova A; Lin Y
    Anal Chem; 2011 Sep; 83(17):6580-5. PubMed ID: 21797208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinases of cultured osteoblasts: selectivity for the extracellular matrix proteins of bone and their catalytic competence for osteopontin.
    Salih E; Ashkar S; Gerstenfeld LC; Glimcher MJ
    J Bone Miner Res; 1996 Oct; 11(10):1461-73. PubMed ID: 8889846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.