These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22764889)

  • 21. Electrochemical investigations into Tau protein phosphorylations.
    Martić S; Beheshti S; Rains MK; Kraatz HB
    Analyst; 2012 May; 137(9):2042-6. PubMed ID: 22441328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical immunoassay for CD10 antigen using scanning electrochemical microscopy.
    Song W; Yan Z; Hu K
    Biosens Bioelectron; 2012; 38(1):425-9. PubMed ID: 22727518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of kinase target phosphorylation consensus motifs using peptide SPOT arrays.
    Leung GC; Murphy JM; Briant D; Sicheri F
    Methods Mol Biol; 2009; 570():187-95. PubMed ID: 19649593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MALDI-TOF mass-spectrometry-based versatile method for the characterization of protein kinases.
    Kondo N; Nishimura S
    Chemistry; 2009; 15(6):1413-21. PubMed ID: 19115309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs.
    Riddle SM; Vedvik KL; Hanson GT; Vogel KW
    Anal Biochem; 2006 Sep; 356(1):108-16. PubMed ID: 16797477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. KiC assay: a quantitative mass spectrometry-based approach for kinase client screening and activity analysis [corrected].
    Huang Y; Thelen JJ
    Methods Mol Biol; 2012; 893():359-70. PubMed ID: 22665311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heparin, a powerful inhibition of type II casein kinases, stimulates the phosphorylation of some protein substrates by the catalytic subunit of cAMP-dependent protein kinase.
    Meggio F; Donella-Deana A; Pinna LA
    Biochem Int; 1983 Mar; 6(3):427-32. PubMed ID: 6591921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15).
    Xie Y; Chen A; Du D; Lin Y
    Anal Chim Acta; 2011 Aug; 699(1):44-8. PubMed ID: 21704756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis.
    de la Fuente van Bentem S; Anrather D; Dohnal I; Roitinger E; Csaszar E; Joore J; Buijnink J; Carreri A; Forzani C; Lorkovic ZJ; Barta A; Lecourieux D; Verhounig A; Jonak C; Hirt H
    J Proteome Res; 2008 Jun; 7(6):2458-70. PubMed ID: 18433157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring protein kinase activity in cell lysates using a high-density peptide microarray.
    Han X; Yamanouchi G; Mori T; Kang JH; Niidome T; Katayama Y
    J Biomol Screen; 2009 Mar; 14(3):256-62. PubMed ID: 19211777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic screening of protein modifications in four kinases using affinity enrichment and mass spectrometry analysis with unrestrictive sequence alignment.
    Zhang K; Zhu Y; He X; Zhang Y
    Anal Chim Acta; 2011 Apr; 691(1-2):62-7. PubMed ID: 21458632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized ferrocene-functionalized ZnO nanorods for signal amplification in electrochemical immunoassay of Escherichia coli.
    Teng Y; Zhang X; Fu Y; Liu H; Wang Z; Jin L; Zhang W
    Biosens Bioelectron; 2011 Aug; 26(12):4661-6. PubMed ID: 21733671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the kinome in real time with fluorescent peptides.
    González-Vera JA
    Chem Soc Rev; 2012 Mar; 41(5):1652-64. PubMed ID: 21975442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinomics: methods for deciphering the kinome.
    Johnson SA; Hunter T
    Nat Methods; 2005 Jan; 2(1):17-25. PubMed ID: 15789031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence polarization competition immunoassay for tyrosine kinases.
    Seethala R
    Methods; 2000 Sep; 22(1):61-70. PubMed ID: 11020319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanospheres for highly sensitive electrochemical detection of sequence-specific protein-DNA interactions.
    He X; Xu J; Liu Y; Peng R; Lee ST; Kang Z
    Chem Commun (Camb); 2011 Aug; 47(29):8316-8. PubMed ID: 21660335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of kinase activity using versatile fluorescence quencher probes.
    Rhee HW; Lee SH; Shin IS; Choi SJ; Park HH; Han K; Park TH; Hong JI
    Angew Chem Int Ed Engl; 2010 Jul; 49(29):4919-23. PubMed ID: 20540130
    [No Abstract]   [Full Text] [Related]  

  • 38. Substrate screening of protein kinases: detection methods and combinatorial peptide libraries.
    Kim M; Shin DS; Kim J; Lee YS
    Biopolymers; 2010; 94(6):753-62. PubMed ID: 20564046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Receptor tyrosine kinase inhibitor profiling using bead-based multiplex sandwich immunoassays.
    Pötz O; Schneiderhan-Marra N; Henzler T; Herget T; Joos TO
    Methods Mol Biol; 2012; 795():191-202. PubMed ID: 21960224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging.
    Mori T; Inamori K; Inoue Y; Han X; Yamanouchi G; Niidome T; Katayama Y
    Anal Biochem; 2008 Apr; 375(2):223-31. PubMed ID: 18191030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.