These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2276499)

  • 1. 28S ribosomal RNA in Xenopus borealis: gene sequence and differences from Xenopus laevis sequence.
    Ajuh PM; Maden H
    Biochem Soc Trans; 1990 Aug; 18(4):657-8. PubMed ID: 2276499
    [No Abstract]   [Full Text] [Related]  

  • 2. Xenopus borealis and Xenopus laevis 28S ribosomal DNA and the complete 40S ribosomal precursor RNA coding units of both species.
    Ajuh PM; Heeney PA; Maden BE
    Proc Biol Sci; 1991 Jul; 245(1312):65-71. PubMed ID: 1682930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA sequences for typical ribosomal gene spacers from Xenopus laevis and Xenopus borealis.
    Labhart P; Reeder RH
    Nucleic Acids Res; 1987 Apr; 15(8):3623-4. PubMed ID: 3453114
    [No Abstract]   [Full Text] [Related]  

  • 4. Splicing control of the L1 ribosomal protein gene of X.laevis: structural similarities between sequences present in the regulatory intron and in the 28S ribosomal RNA.
    Fragapane P; Caffarelli E; Santoro B; Sperandio S; Lener M; Bozzoni I
    Mol Biol Rep; 1990; 14(2-3):111-2. PubMed ID: 2362566
    [No Abstract]   [Full Text] [Related]  

  • 5. Complementarity of conserved sequence elements present in 28S ribosomal RNA and in ribosomal protein genes of Xenopus laevis and Xenopus tropicalis.
    Cutruzzolá F; Loreni F; Bozzoni I
    Gene; 1986; 49(3):371-6. PubMed ID: 3569921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new 3'-terminus for Xenopus laevis 28S ribosomal RNA.
    Schnare MN; Gray MW
    Nucleic Acids Res; 1992 Feb; 20(3):608. PubMed ID: 1741295
    [No Abstract]   [Full Text] [Related]  

  • 7. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits.
    Kaser A; Bogengruber E; Hallegger M; Doppler E; Lepperdinger G; Jantsch M; Breitenbach M; Kreil G
    Biol Chem; 2001 Dec; 382(12):1637-47. PubMed ID: 11843177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of major divergence between the internal transcribed spacers of ribosomal DNA in Xenopus borealis and Xenopus laevis, and of minimal divergence within ribosomal coding regions.
    Furlong JC; Maden BE
    EMBO J; 1983; 2(3):443-8. PubMed ID: 11894961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for autogenous regulation of Xenopus laevis ribosomal protein L1 synthesis at the splicing level.
    Gultyaev AP; Shestopalov BV
    FEBS Lett; 1988 May; 232(1):9-11. PubMed ID: 3366251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional difference between the sites of ribosomal 40S precursor 3' end formation in Xenopus laevis and Xenopus borealis.
    Labhart P; Reeder RH
    Nucleic Acids Res; 1990 Sep; 18(17):5271-7. PubMed ID: 2402447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence analysis of the D1 and D2 regions of 28S rDNA in the hornet (Vespa crabro) (Hymenoptera, Vespinae).
    Schmitz J; Moritz RF
    Insect Mol Biol; 1994 Nov; 3(4):273-7. PubMed ID: 7704312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements.
    Guimond A; Moss T
    Biol Chem; 1999 Feb; 380(2):167-74. PubMed ID: 10195424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoskeletal actin gene families of Xenopus borealis and Xenopus laevis.
    Cross GS; Wilson C; Erba HP; Woodland HR
    J Mol Evol; 1988; 27(1):17-28. PubMed ID: 3133485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oocyte and somatic 5S ribosomal RNA and 5S RNA encoding genes in Xenopus tropicalis.
    Nietfeld W; Digweed M; Mentzel H; Meyerhof W; Köster M; Knöchel W; Erdmann VA; Pieler T
    Nucleic Acids Res; 1988 Sep; 16(18):8803-15. PubMed ID: 3174434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a 54-nucleotide gap region in the 28S rRNA gene of Schistosoma mansoni.
    van Keulen H; Mertz PM; LoVerde PT; Shi H; Rekosh DM
    Mol Biochem Parasitol; 1991 Apr; 45(2):205-14. PubMed ID: 2038356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The external transcribed spacer and preceding region of Xenopus borealis rDNA: comparison with the corresponding region of Xenopus laevis rDNA.
    Furlong JC; Forbes J; Robertson M; Maden BE
    Nucleic Acids Res; 1983 Dec; 11(23):8183-96. PubMed ID: 6672764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human 18 S ribosomal RNA sequence inferred from DNA sequence. Variations in 18 S sequences and secondary modification patterns between vertebrates.
    McCallum FS; Maden BE
    Biochem J; 1985 Dec; 232(3):725-33. PubMed ID: 4091818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleotide sequences of 5.8-S ribosomal RNA from Xenopus laevis and Xenopus borealis.
    Ford PJ; Mathieson T
    Eur J Biochem; 1978 Jun; 87(1):199-214. PubMed ID: 668689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point mutation analysis of the Xenopus laevis RNA polymerase I core promoter.
    Firek S; Read C; Smith DR; Moss T
    Nucleic Acids Res; 1990 Jan; 18(1):105-9. PubMed ID: 2308816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal gene promoter domains can function as artificial enhancers of RNA polymerase I transcription, supporting a promoter origin for natural enhancers in Xenopus.
    Pikaard CS
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):464-8. PubMed ID: 8290549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.