These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2276501)

  • 21. The interaction between alpha-chymotrypsin and pancreatic trypsin inhibitor (Kunitz inhibitor). Kinetic and thermodynamic properties.
    Vincent JP; Lazdunski M
    Eur J Biochem; 1973 Oct; 38(2):365-72. PubMed ID: 4773877
    [No Abstract]   [Full Text] [Related]  

  • 22. Microenvironmental effects on enzyme catalysis. A kinetic study of hydrophobic derivatives of chymotrypsin.
    Remy MH; Bourdillon C; Thomas D
    Biochim Biophys Acta; 1985 May; 829(1):69-75. PubMed ID: 3995046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues.
    Nie B; Stutzman J; Xie A
    Biophys J; 2005 Apr; 88(4):2833-47. PubMed ID: 15653739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Secondary structure of streptokinase in aqueous solution: a Fourier transform infrared spectroscopic study.
    Fabian H; Naumann D; Misselwitz R; Ristau O; Gerlach D; Welfle H
    Biochemistry; 1992 Jul; 31(28):6532-8. PubMed ID: 1633164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rate enhancement specificity with alpha-chymotrypsin: temperature dependence of deacylation.
    Baggott JE; Klapper MH
    Biochemistry; 1976 Apr; 15(7):1473-81. PubMed ID: 4088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution.
    White AJ; Drabble K; Ward S; Wharton CW
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):317-23. PubMed ID: 1417785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential scanning calorimetric and Fourier transform infrared spectroscopic investigations of cerebroside polymorphism.
    Jackson M; Johnston DS; Chapman D
    Biochim Biophys Acta; 1988 Oct; 944(3):497-506. PubMed ID: 3179302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attenuated total reflectance Fourier transform infrared analysis of an acyl-enzyme intermediate of alpha-chymotrypsin.
    Swedberg SA; Pesek JJ; Fink AL
    Anal Biochem; 1990 Apr; 186(1):153-8. PubMed ID: 2356965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups.
    Blume A; Hübner W; Messner G
    Biochemistry; 1988 Oct; 27(21):8239-49. PubMed ID: 3233207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subgel phases of n-saturated diacylphosphatidylcholines: a Fourier-transform infrared spectroscopic study.
    Lewis RN; McElhaney RN
    Biochemistry; 1990 Aug; 29(34):7946-53. PubMed ID: 2261450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular aspects of the interaction of spermidine and α-chymotrypsin.
    Farhadian S; Shareghi B; Saboury AA; Babaheydari AK; Raisi F; Heidari E
    Int J Biol Macromol; 2016 Nov; 92():523-532. PubMed ID: 27456119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic activity of dimeric alpha-chymotrypsin. Acylation kinetics at low pH's.
    Ikeda K; Kunugi S; Hirohara H
    J Biochem; 1980 Mar; 87(3):871-80. PubMed ID: 7390966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of modulated structural dynamics on the kinetics of alpha-chymotrypsin catalysis. Insights through chemical glycosylation, molecular dynamics and domain motion analysis.
    Solá RJ; Griebenow K
    FEBS J; 2006 Dec; 273(23):5303-19. PubMed ID: 17076704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calorimetric and Fourier transform infrared spectroscopic study of solid proteins immersed in low water organic solvents.
    Sirotkin VA; Zinatullin AN; Solomonov BN; Faizullin DA; Fedotov VD
    Biochim Biophys Acta; 2001 Jun; 1547(2):359-69. PubMed ID: 11410292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Kinetics of alpha-chymotrypsin catalyzed hydrolysis in equilibrium. III. Rate constants for individual stages and thermodynamic parameters at different pH's].
    Antonov VK; Ginodman LM; Gurova AG
    Mol Biol (Mosk); 1977; 11(5):1160-6. PubMed ID: 36553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Free energy linearity principle in enzymatic catalysis and thermodynamic principles of specificity].
    Kozlov LV
    Biokhimiia; 1981 Aug; 46(8):1369-75. PubMed ID: 7272358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resonance Raman and Fourier transform infrared spectroscopic studies of the acyl carbonyl group in [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin: evidence for artifacts in the spectra obtained by both techniques.
    Tonge PJ; Pusztai M; White AJ; Wharton CW; Carey PR
    Biochemistry; 1991 May; 30(19):4790-5. PubMed ID: 2029519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of the histidine residues of indole-chymotrypsin. Implications for the activation process and catalytic mechanism.
    Cruickshank WH; Kaplan H
    Biochem J; 1975 Jun; 147(3):411-16. PubMed ID: 241327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen bonding in lignin: a Fourier transform infrared model compound study.
    Kubo S; Kadla JF
    Biomacromolecules; 2005; 6(5):2815-21. PubMed ID: 16153123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of titrimetric and photometric methods for the determination of chymotrypsin catalytic activity in stool.
    Junge W
    Clin Biochem; 1986 Dec; 19(6):323-8. PubMed ID: 3581464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.