These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 22765167)

  • 1. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles.
    Ebert D; Bhushan B
    Langmuir; 2012 Aug; 28(31):11391-9. PubMed ID: 22765167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic composite films produced on various substrates.
    Manoudis PN; Karapanagiotis I; Tsakalof A; Zuburtikudis I; Panayiotou C
    Langmuir; 2008 Oct; 24(19):11225-32. PubMed ID: 18720965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Oct; 384(1):182-8. PubMed ID: 22818796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-layered-coated mechanically-durable superomniphobic surfaces with anti-smudge properties.
    Muthiah P; Bhushan B; Yun K; Kondo H
    J Colloid Interface Sci; 2013 Nov; 409():227-36. PubMed ID: 23993782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any post-treatments.
    Xu L; He J
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3293-9. PubMed ID: 22663342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.
    Goswami D; Medda SK; De G
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent superhydrophobic films based on silica nanoparticles.
    Bravo J; Zhai L; Wu Z; Cohen RE; Rubner MF
    Langmuir; 2007 Jun; 23(13):7293-8. PubMed ID: 17523683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm).
    Karunakaran RG; Lu CH; Zhang Z; Yang S
    Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces.
    Yang J; Rose FR; Gadegaard N; Alexander MR
    Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region.
    Camargo KC; Michels AF; Rodembusch FS; Horowitz F
    Chem Commun (Camb); 2012 May; 48(41):4992-4. PubMed ID: 22509490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopatternable transparent conducting oxide nanoparticles for transparent electrodes.
    Kim WJ; Kim SJ; Cartwright AN; Prasad PN
    Nanotechnology; 2013 Feb; 24(6):065302. PubMed ID: 23339987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dense passivating poly(ethylene glycol) films on indium tin oxide substrates.
    Schlapak R; Armitage D; Saucedo-Zeni N; Hohage M; Howorka S
    Langmuir; 2007 Sep; 23(20):10244-53. PubMed ID: 17715951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.
    Tao P; Viswanath A; Schadler LS; Benicewicz BC; Siegel RW
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3638-45. PubMed ID: 21823657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.
    Suresh Kumar P; Sundaramurthy J; Mangalaraj D; Nataraj D; Rajarathnam D; Srinivasan MP
    J Colloid Interface Sci; 2011 Nov; 363(1):51-8. PubMed ID: 21831394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.
    Pareo P; De Gregorio GL; Manca M; Pianesi MS; De Marco L; Cavallaro F; Mari M; Pappadà S; Ciccarella G; Gigli G
    J Colloid Interface Sci; 2011 Nov; 363(2):668-75. PubMed ID: 21855889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties.
    Xiong J; Das SN; Shin B; Kar JP; Choi JH; Myoung JM
    J Colloid Interface Sci; 2010 Oct; 350(1):344-7. PubMed ID: 20637472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2016 Nov; 481():82-90. PubMed ID: 27454031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Feb; 368(1):584-91. PubMed ID: 22062688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-repellent coatings prepared by modification of ZnO nanoparticles.
    Chakradhar RP; Dinesh Kumar V
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Aug; 94():352-6. PubMed ID: 22575349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.