These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 22765167)
1. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Ebert D; Bhushan B Langmuir; 2012 Aug; 28(31):11391-9. PubMed ID: 22765167 [TBL] [Abstract][Full Text] [Related]
2. Superhydrophobic composite films produced on various substrates. Manoudis PN; Karapanagiotis I; Tsakalof A; Zuburtikudis I; Panayiotou C Langmuir; 2008 Oct; 24(19):11225-32. PubMed ID: 18720965 [TBL] [Abstract][Full Text] [Related]
3. Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles. Ebert D; Bhushan B J Colloid Interface Sci; 2012 Oct; 384(1):182-8. PubMed ID: 22818796 [TBL] [Abstract][Full Text] [Related]
5. Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any post-treatments. Xu L; He J ACS Appl Mater Interfaces; 2012 Jun; 4(6):3293-9. PubMed ID: 22663342 [TBL] [Abstract][Full Text] [Related]
6. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles. Goswami D; Medda SK; De G ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656 [TBL] [Abstract][Full Text] [Related]
7. Transparent superhydrophobic films based on silica nanoparticles. Bravo J; Zhai L; Wu Z; Cohen RE; Rubner MF Langmuir; 2007 Jun; 23(13):7293-8. PubMed ID: 17523683 [TBL] [Abstract][Full Text] [Related]
8. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Karunakaran RG; Lu CH; Zhang Z; Yang S Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577 [TBL] [Abstract][Full Text] [Related]
9. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces. Yang J; Rose FR; Gadegaard N; Alexander MR Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741 [TBL] [Abstract][Full Text] [Related]
10. Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Camargo KC; Michels AF; Rodembusch FS; Horowitz F Chem Commun (Camb); 2012 May; 48(41):4992-4. PubMed ID: 22509490 [TBL] [Abstract][Full Text] [Related]
11. Photopatternable transparent conducting oxide nanoparticles for transparent electrodes. Kim WJ; Kim SJ; Cartwright AN; Prasad PN Nanotechnology; 2013 Feb; 24(6):065302. PubMed ID: 23339987 [TBL] [Abstract][Full Text] [Related]
12. Dense passivating poly(ethylene glycol) films on indium tin oxide substrates. Schlapak R; Armitage D; Saucedo-Zeni N; Hohage M; Howorka S Langmuir; 2007 Sep; 23(20):10244-53. PubMed ID: 17715951 [TBL] [Abstract][Full Text] [Related]
13. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles. Tao P; Viswanath A; Schadler LS; Benicewicz BC; Siegel RW ACS Appl Mater Interfaces; 2011 Sep; 3(9):3638-45. PubMed ID: 21823657 [TBL] [Abstract][Full Text] [Related]
14. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634 [TBL] [Abstract][Full Text] [Related]