BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22765384)

  • 1. Photodegradable macromers and hydrogels for live cell encapsulation and release.
    Griffin DR; Kasko AM
    J Am Chem Soc; 2012 Aug; 134(31):13103-7. PubMed ID: 22765384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of photodegradable macromers for conjugation and release of bioactive molecules.
    Griffin DR; Schlosser JL; Lam SF; Nguyen TH; Maynard HD; Kasko AM
    Biomacromolecules; 2013 Apr; 14(4):1199-207. PubMed ID: 23506440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-selective delivery of model therapeutics from hydrogels.
    Griffin DR; Kasko AM
    ACS Macro Lett; 2012 Nov; 1(11):1330-1334. PubMed ID: 25285242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release.
    LeValley PJ; Neelarapu R; Sutherland BP; Dasgupta S; Kloxin CJ; Kloxin AM
    J Am Chem Soc; 2020 Mar; 142(10):4671-4679. PubMed ID: 32037819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.
    Sahoo S; Chung C; Khetan S; Burdick JA
    Biomacromolecules; 2008 Apr; 9(4):1088-92. PubMed ID: 18324776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels.
    Lunzer M; Shi L; Andriotis OG; Gruber P; Markovic M; Thurner PJ; Ossipov D; Liska R; Ovsianikov A
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15122-15127. PubMed ID: 30191643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodegradable hydrogels for dynamic tuning of physical and chemical properties.
    Kloxin AM; Kasko AM; Salinas CN; Anseth KS
    Science; 2009 Apr; 324(5923):59-63. PubMed ID: 19342581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of matrix degradation and functionality on cell survival and morphogenesis in PEG-based hydrogels.
    Raza A; Lin CC
    Macromol Biosci; 2013 Aug; 13(8):1048-58. PubMed ID: 23776086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering.
    Watson BM; Vo TN; Tatara AM; Shah SR; Scott DW; Engel PS; Mikos AG
    Biomaterials; 2015 Oct; 67():286-96. PubMed ID: 26232878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release To Induce hMSC Osteogenesis.
    Huynh CT; Zheng Z; Nguyen MK; McMillan A; Yesilbag Tonga G; Rotello VM; Alsberg E
    ACS Biomater Sci Eng; 2017 Sep; 3(9):2011-2023. PubMed ID: 33440556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels.
    Bahney CS; Lujan TJ; Hsu CW; Bottlang M; West JL; Johnstone B
    Eur Cell Mater; 2011 Jul; 22():43-55; discussion 55. PubMed ID: 21761391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodegradable Hydrogels for Cell Encapsulation and Tissue Adhesion.
    Villiou M; Paez JI; Del Campo A
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):37862-37872. PubMed ID: 32805969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodegradation as a mechanism for controlled drug delivery.
    Griffin DR; Patterson JT; Kasko AM
    Biotechnol Bioeng; 2010 Dec; 107(6):1012-9. PubMed ID: 20661910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-Changing Photodegradable Hydrogels for Dynamic 3D Cell Culture.
    Käpylä E; Delgado SM; Kasko AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17885-93. PubMed ID: 27322508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels.
    Huynh CT; Nguyen MK; Naris M; Tonga GY; Rotello VM; Alsberg E
    Nanomedicine (Lond); 2016 Jun; 11(12):1535-50. PubMed ID: 27246686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodegradable Gelatin-Based Hydrogels Prepared by Bioorthogonal Click Chemistry for Cell Encapsulation and Release.
    Truong VX; Tsang KM; Simon GP; Boyd RL; Evans RA; Thissen H; Forsythe JS
    Biomacromolecules; 2015 Jul; 16(7):2246-53. PubMed ID: 26056855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels.
    Whitely M; Cereceres S; Dhavalikar P; Salhadar K; Wilems T; Smith B; Mikos A; Cosgriff-Hernandez E
    Biomaterials; 2018 Dec; 185():194-204. PubMed ID: 30245387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels.
    Zhou M; Lozano N; Wychowaniec JK; Hodgkinson T; Richardson SM; Kostarelos K; Hoyland JA
    Acta Biomater; 2019 Sep; 96():271-280. PubMed ID: 31325577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells.
    Li Y; Yang C; Khan M; Liu S; Hedrick JL; Yang YY; Ee PL
    Biomaterials; 2012 Sep; 33(27):6533-41. PubMed ID: 22704846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.