These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 22765902)
21. Deletion of the hypothetical protein SCO2127 of Streptomyces coelicolor allowed identification of a new regulator of actinorhodin production. Tierrafría VH; Licona-Cassani C; Maldonado-Carmona N; Romero-Rodríguez A; Centeno-Leija S; Marcellin E; Rodríguez-Sanoja R; Ruiz-Villafán B; Nielsen LK; Sánchez S Appl Microbiol Biotechnol; 2016 Nov; 100(21):9229-9237. PubMed ID: 27604626 [TBL] [Abstract][Full Text] [Related]
22. Transcriptome analysis of wild-type and afsS deletion mutant strains identifies synergistic transcriptional regulator of afsS for a high antibiotic-producing strain of Streptomyces coelicolor A3(2). Kim MW; Lee BR; You S; Kim EJ; Kim JN; Song E; Yang YH; Hwang D; Kim BG Appl Microbiol Biotechnol; 2018 Apr; 102(7):3243-3253. PubMed ID: 29455385 [TBL] [Abstract][Full Text] [Related]
23. Co-factor independent oxidases ncnN and actVA-3 are involved in the dimerization of benzoisochromanequinone antibiotics in naphthocyclinone and actinorhodin biosynthesis. Baral B; Matroodi S; Siitonen V; Thapa K; Akhgari A; Yamada K; Nuutila A; Metsä-Ketelä M FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37989784 [TBL] [Abstract][Full Text] [Related]
24. Binding study of AfsK, a Ser/Thr kinase from Streptomyces coelicolor A3(2) and S-adenosyl-L-methionine. Lee Y; Kim K; Suh JW; Rhee S; Lim Y FEMS Microbiol Lett; 2007 Jan; 266(2):236-40. PubMed ID: 17132150 [TBL] [Abstract][Full Text] [Related]
25. Loss of phosphomannomutase activity enhances actinorhodin production in Streptomyces coelicolor. Yang YH; Song E; Park SH; Kim JN; Lee K; Kim E; Kim YG; Kim BG Appl Microbiol Biotechnol; 2010 May; 86(5):1485-92. PubMed ID: 20024545 [TBL] [Abstract][Full Text] [Related]
26. The ECF sigma factor SigT regulates actinorhodin production in response to nitrogen stress in Streptomyces coelicolor. Feng WH; Mao XM; Liu ZH; Li YQ Appl Microbiol Biotechnol; 2011 Dec; 92(5):1009-21. PubMed ID: 22002068 [TBL] [Abstract][Full Text] [Related]
28. Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin-Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics. Hashimoto M; Taguchi T; Ishikawa K; Mori R; Hotta A; Watari S; Katakawa K; Kumamoto T; Okamoto S; Ichinose K Chembiochem; 2020 Mar; 21(5):623-627. PubMed ID: 31532569 [TBL] [Abstract][Full Text] [Related]
29. S-adenosyl-L-methionine activates actinorhodin biosynthesis by increasing autophosphorylation of the Ser/Thr protein kinase AfsK in Streptomyces coelicolor A3(2). Jin YY; Cheng J; Yang SH; Meng L; Palaniyandi SA; Zhao XQ; Suh JW Biosci Biotechnol Biochem; 2011; 75(5):910-3. PubMed ID: 21597198 [TBL] [Abstract][Full Text] [Related]
30. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). Lian W; Jayapal KP; Charaniya S; Mehra S; Glod F; Kyung YS; Sherman DH; Hu WS BMC Genomics; 2008 Jan; 9():56. PubMed ID: 18230178 [TBL] [Abstract][Full Text] [Related]
31. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Shu D; Chen L; Wang W; Yu Z; Ren C; Zhang W; Yang S; Lu Y; Jiang W Appl Microbiol Biotechnol; 2009 Jan; 81(6):1149-60. PubMed ID: 18949475 [TBL] [Abstract][Full Text] [Related]
32. Nitric Oxide Signaling for Actinorhodin Production in Streptomyces coelicolor A3(2) via the DevS/R Two-Component System. Honma S; Ito S; Yajima S; Sasaki Y Appl Environ Microbiol; 2021 Jun; 87(14):e0048021. PubMed ID: 33990302 [TBL] [Abstract][Full Text] [Related]
33. Mechanism and regulation of the Two-component FMN-dependent monooxygenase ActVA-ActVB from Streptomyces coelicolor. Valton J; Mathevon C; Fontecave M; Nivière V; Ballou DP J Biol Chem; 2008 Apr; 283(16):10287-96. PubMed ID: 18245777 [TBL] [Abstract][Full Text] [Related]
34. Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Lu Y; Wang W; Shu D; Zhang W; Chen L; Qin Z; Yang S; Jiang W Appl Microbiol Biotechnol; 2007 Dec; 77(3):625-35. PubMed ID: 17899070 [TBL] [Abstract][Full Text] [Related]
35. Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). Rudd BA; Hopwood DA J Gen Microbiol; 1979 Sep; 114(1):35-43. PubMed ID: 521794 [TBL] [Abstract][Full Text] [Related]
37. The bldC developmental locus of Streptomyces coelicolor encodes a member of a family of small DNA-binding proteins related to the DNA-binding domains of the MerR family. Hunt AC; Servín-González L; Kelemen GH; Buttner MJ J Bacteriol; 2005 Jan; 187(2):716-28. PubMed ID: 15629942 [TBL] [Abstract][Full Text] [Related]
38. Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor. Liu J; Li J; Dong H; Chen Y; Wang Y; Wu H; Li C; Weaver DT; Zhang L; Zhang B Appl Microbiol Biotechnol; 2017 Jul; 101(14):5773-5783. PubMed ID: 28601893 [TBL] [Abstract][Full Text] [Related]
39. Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145. Zhao YF; Lu DD; Bechthold A; Ma Z; Yu XP J Zhejiang Univ Sci B; 2018 Sept.; 19(9):708-717. PubMed ID: 30178637 [TBL] [Abstract][Full Text] [Related]
40. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Sevcikova B; Kormanec J Arch Microbiol; 2004 May; 181(5):384-9. PubMed ID: 15054568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]