BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22766113)

  • 1. In vivo characterization of ultrasound contrast agents: microbubble spectroscopy in a chicken embryo.
    Faez T; Skachkov I; Versluis M; Kooiman K; de Jong N
    Ultrasound Med Biol; 2012 Sep; 38(9):1608-17. PubMed ID: 22766113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification.
    Kooiman K; van Rooij T; Qin B; Mastik F; Vos HJ; Versluis M; Klibanov AL; de Jong N; Villanueva FS; Chen X
    PLoS One; 2017; 12(7):e0180747. PubMed ID: 28686673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the subharmonic response of phospholipid-coated microbubbles for carotid imaging.
    Faez T; Emmer M; Docter M; Sijl J; Versluis M; de Jong N
    Ultrasound Med Biol; 2011 Jun; 37(6):958-70. PubMed ID: 21531498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles.
    Sijl J; Dollet B; Overvelde M; Garbin V; Rozendal T; de Jong N; Lohse D; Versluis M
    J Acoust Soc Am; 2010 Nov; 128(5):3239-52. PubMed ID: 21110619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic manipulation of the subharmonic scattering of phospholipid-coated microbubbles.
    Faez T; Renaud G; Defontaine M; Calle S; de Jong N
    Phys Med Biol; 2011 Oct; 56(19):6459-73. PubMed ID: 21934190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambient Pressure Sensitivity of the Subharmonic Response of Coated Microbubbles: Effects of Acoustic Excitation Parameters.
    Azami RH; Forsberg F; Eisenbrey JR; Sarkar K
    Ultrasound Med Biol; 2023 Jul; 49(7):1550-1560. PubMed ID: 37100673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear shell behavior of phospholipid-coated microbubbles.
    Overvelde M; Garbin V; Sijl J; Dollet B; de Jong N; Lohse D; Versluis M
    Ultrasound Med Biol; 2010 Dec; 36(12):2080-92. PubMed ID: 21030140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid shedding from single oscillating microbubbles.
    Luan Y; Lajoinie G; Gelderblom E; Skachkov I; van der Steen AF; Vos HJ; Versluis M; De Jong N
    Ultrasound Med Biol; 2014 Aug; 40(8):1834-46. PubMed ID: 24798388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: a comparative study of five agents.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2012 May; 38(5):846-63. PubMed ID: 22402024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subharmonic response of encapsulated microbubbles: conditions for existence and amplification.
    Kimmel E; Krasovitski B; Hoogi A; Razansky D; Adam D
    Ultrasound Med Biol; 2007 Nov; 33(11):1767-76. PubMed ID: 17720301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic characterization of single ultrasound contrast agent microbubbles.
    Sijl J; Gaud E; Frinking PJ; Arditi M; de Jong N; Lohse D; Versluis M
    J Acoust Soc Am; 2008 Dec; 124(6):4091-7. PubMed ID: 19206831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustical properties of individual liposome-loaded microbubbles.
    Luan Y; Faez T; Gelderblom E; Skachkov I; Geers B; Lentacker I; van der Steen T; Versluis M; de Jong N
    Ultrasound Med Biol; 2012 Dec; 38(12):2174-85. PubMed ID: 23196203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC.
    van Rooij T; Luan Y; Renaud G; van der Steen AF; Versluis M; de Jong N; Kooiman K
    Ultrasound Med Biol; 2015 May; 41(5):1432-45. PubMed ID: 25724308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes.
    Frinking PJ; Brochot J; Arditi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1762-71. PubMed ID: 20704062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction.
    Borden MA; Kruse DE; Caskey CF; Zhao S; Dayton PA; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1992-2002. PubMed ID: 16422411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.