These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells. Borg DJ; Welzel PB; Grimmer M; Friedrichs J; Weigelt M; Wilhelm C; Prewitz M; Stißel A; Hommel A; Kurth T; Freudenberg U; Bonifacio E; Werner C Acta Biomater; 2016 Oct; 44():178-87. PubMed ID: 27506126 [TBL] [Abstract][Full Text] [Related]
4. Reduction of marginal mass required for successful islet transplantation in a diabetic rat model using adipose tissue-derived mesenchymal stromal cells. Navaei-Nigjeh M; Moloudizargari M; Baeeri M; Gholami M; Lotfibakhshaiesh N; Soleimani M; Vasheghani-Farahani E; Ai J; Abdollahi M Cytotherapy; 2018 Sep; 20(9):1124-1142. PubMed ID: 30068495 [TBL] [Abstract][Full Text] [Related]
5. Effect of hTIMP-1 overexpression in human umbilical cord mesenchymal stem cells on the repair of pancreatic islets in type-1 diabetic mice. Bao Y; Zhao Z; Gao H Cell Biol Int; 2021 May; 45(5):1038-1049. PubMed ID: 33404139 [TBL] [Abstract][Full Text] [Related]
6. Mesenchymal stem cells and ligand incorporation in biomimetic poly(ethylene glycol) hydrogels significantly improve insulin secretion from pancreatic islets. Bal T; Nazli C; Okcu A; Duruksu G; Karaöz E; Kizilel S J Tissue Eng Regen Med; 2017 Mar; 11(3):694-703. PubMed ID: 25393526 [TBL] [Abstract][Full Text] [Related]
7. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo. Karaoz E; Okcu A; Ünal ZS; Subasi C; Saglam O; Duruksu G Cytotherapy; 2013 May; 15(5):557-70. PubMed ID: 23388582 [TBL] [Abstract][Full Text] [Related]
8. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Kerby A; Jones ES; Jones PM; King AJ Cytotherapy; 2013 Feb; 15(2):192-200. PubMed ID: 23321331 [TBL] [Abstract][Full Text] [Related]
9. Multipotent mesenchymal stromal cells enhance insulin secretion from human islets via N-cadherin interaction and prolong function of transplanted encapsulated islets in mice. Montanari E; Meier RPH; Mahou R; Seebach JD; Wandrey C; Gerber-Lemaire S; Buhler LH; Gonelle-Gispert C Stem Cell Res Ther; 2017 Sep; 8(1):199. PubMed ID: 28962589 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Rios PD; Skoumal M; Liu J; Youngblood R; Kniazeva E; Garcia AJ; Shea LD Biotechnol Bioeng; 2018 Sep; 115(9):2356-2364. PubMed ID: 29873059 [TBL] [Abstract][Full Text] [Related]
11. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice. Rackham CL; Dhadda PK; Chagastelles PC; Simpson SJ; Dattani AA; Bowe JE; Jones PM; King AJ Cytotherapy; 2013 Apr; 15(4):449-59. PubMed ID: 23321626 [TBL] [Abstract][Full Text] [Related]
12. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. Llacua A; de Haan BJ; Smink SA; de Vos P J Biomed Mater Res A; 2016 Jul; 104(7):1788-96. PubMed ID: 26990360 [TBL] [Abstract][Full Text] [Related]
13. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Vaithilingam V; Evans MDM; Lewy DM; Bean PA; Bal S; Tuch BE Sci Rep; 2017 Aug; 7(1):10059. PubMed ID: 28855611 [TBL] [Abstract][Full Text] [Related]
14. Extracellular matrix inclusion in immunoisolating alginate-based microcapsules promotes longevity, reduces fibrosis, and supports function of islet allografts in vivo. Kuwabara R; Qin T; Alberto Llacua L; Hu S; Boekschoten MV; de Haan BJ; Smink AM; de Vos P Acta Biomater; 2023 Mar; 158():151-162. PubMed ID: 36610609 [TBL] [Abstract][Full Text] [Related]
15. Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. Weaver JD; Headen DM; Coronel MM; Hunckler MD; Shirwan H; García AJ Am J Transplant; 2019 May; 19(5):1315-1327. PubMed ID: 30378751 [TBL] [Abstract][Full Text] [Related]
16. Transdifferentiation of Bone Marrow Mesenchymal Stem Cells into the Islet-Like Cells: the Role of Extracellular Matrix Proteins. Pokrywczynska M; Lewandowska MA; Krzyzanowska S; Jundzill A; Rasmus M; Warda K; Gagat M; Deptula A; Helmin-Basa A; Holysz M; Nowacki M; Buchholz L; Bodnar M; Marszalek A; Grzanka A; Jozwicki W; Michalkiewicz J; Drewa T Arch Immunol Ther Exp (Warsz); 2015 Oct; 63(5):377-84. PubMed ID: 25957583 [TBL] [Abstract][Full Text] [Related]
17. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. Hamilton DC; Shih HH; Schubert RA; Michie SA; Staats PN; Kaplan DL; Fontaine MJ J Tissue Eng Regen Med; 2017 Mar; 11(3):887-895. PubMed ID: 25619945 [TBL] [Abstract][Full Text] [Related]
18. ECM-based bioactive microencapsulation significantly improves islet function and graft performance. Krishtul S; Skitel Moshe M; Kovrigina I; Baruch L; Machluf M Acta Biomater; 2023 Nov; 171():249-260. PubMed ID: 37708927 [TBL] [Abstract][Full Text] [Related]
19. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Jun Y; Kang AR; Lee JS; Park SJ; Lee DY; Moon SH; Lee SH Biomaterials; 2014 Jun; 35(17):4815-26. PubMed ID: 24636217 [TBL] [Abstract][Full Text] [Related]
20. Silk matrices promote formation of insulin-secreting islet-like clusters. Shalaly ND; Ria M; Johansson U; Åvall K; Berggren PO; Hedhammar M Biomaterials; 2016 Jun; 90():50-61. PubMed ID: 26986856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]