BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22766280)

  • 1. Polymeric material for anti-biofouling.
    Ma C; Yang H; Zhou X; Wu B; Zhang G
    Colloids Surf B Biointerfaces; 2012 Dec; 100():31-5. PubMed ID: 22766280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of polyurethane with zwitterionic side chains and their protein resistance.
    Ma C; Zhou H; Wu B; Zhang G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):455-61. PubMed ID: 21222476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable Polymer with Protein Resistance in a Marine Environment.
    Ma J; Ma C; Zhang G
    Langmuir; 2015 Jun; 31(23):6471-8. PubMed ID: 26023894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of a PEO-PPO-PEO triblock copolymer on metal oxide surfaces with a view to reducing protein adsorption and further biofouling.
    Yang Y; Poleunis C; Románszki L; Telegdi J; Dupont-Gillain CC
    Biofouling; 2013; 29(9):1123-37. PubMed ID: 24050779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma proteins adsorption mechanism on polyethylene-grafted poly(ethylene glycol) surface by quartz crystal microbalance with dissipation.
    Jin J; Jiang W; Yin J; Ji X; Stagnaro P
    Langmuir; 2013 Jun; 29(22):6624-33. PubMed ID: 23659226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling.
    Dai G; Xie Q; Ai X; Ma C; Zhang G
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41750-41757. PubMed ID: 31603306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalised inherently conducting polymers as low biofouling materials.
    Zhang B; Nagle AR; Wallace GG; Hanks TW; Molino PJ
    Biofouling; 2015; 31(6):493-502. PubMed ID: 26218247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of protein adsorption: surface-induced conformational changes.
    Roach P; Farrar D; Perry CC
    J Am Chem Soc; 2005 Jun; 127(22):8168-73. PubMed ID: 15926845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine.
    Zhi X; Li P; Gan X; Zhang W; Shen T; Yuan J; Shen J
    J Biomater Sci Polym Ed; 2014; 25(14-15):1619-28. PubMed ID: 25075613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets.
    Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL
    Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer buildup and biofouling characteristics of PSS-b-PEG containing films.
    Cortez C; Quinn JF; Hao X; Gudipati CS; Stenzel MH; Davis TP; Caruso F
    Langmuir; 2010 Jun; 26(12):9720-7. PubMed ID: 20205461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoconductive conjugation of bone morphogenetic protein-2 onto titanium/titanium oxide surfaces coated with non-biofouling poly(poly(ethylene glycol) methacrylate).
    Kang SM; Kong B; Oh E; Choi JS; Choi IS
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):385-9. PubMed ID: 19767180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrated polymer brush-modified silica particle coating confers biofouling-resistance on modified materials.
    Yoshikawa C; Qiu J; Shimizu Y; Huang CF; Gelling OJ; van den Bosch E
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):272-277. PubMed ID: 27770891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile approach toward protein-resistant biointerfaces based on photodefinable poly-p-xylylene coating.
    Su CT; Yuan RH; Chen YC; Lin TJ; Chien HW; Hsieh CC; Tsai WB; Chang CH; Chen HY
    Colloids Surf B Biointerfaces; 2014 Apr; 116():727-33. PubMed ID: 24380690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release.
    Cho Y; Sundaram HS; Finlay JA; Dimitriou MD; Callow ME; Callow JA; Kramer EJ; Ober CK
    Biomacromolecules; 2012 Jun; 13(6):1864-74. PubMed ID: 22530840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of poly(oligoethylene oxide methacrylate) for resisting protein adsorption.
    Tsukagoshi T; Kondo Y; Yoshino N
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):94-100. PubMed ID: 17141487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of well-defined core-shell particles by Cu2+-mediated graft copolymerization of methyl methacrylate from bovine serum albumin.
    He C; Liu J; Ye X; Xie L; Zhang Q; Ren X; Zhang G; Wu C
    Langmuir; 2008 Oct; 24(19):10717-22. PubMed ID: 18788763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.
    Lin NJ; Yang HS; Chang Y; Tung KL; Chen WH; Cheng HW; Hsiao SW; Aimar P; Yamamoto K; Lai JY
    Langmuir; 2013 Aug; 29(32):10183-93. PubMed ID: 23906111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.
    Zhou Z; Calabrese DR; Taylor W; Finlay JA; Callow ME; Callow JA; Fischer D; Kramer EJ; Ober CK
    Biofouling; 2014; 30(5):589-604. PubMed ID: 24730510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of ultrahigh molecular weight polyethylene by the poly(ethylene glycol)-grafted method and its effect on the adsorption of proteins and the adhesion of blood platelets.
    Xia B; Xie M; Yang B
    J Biomed Mater Res A; 2013 Jan; 101(1):54-63. PubMed ID: 22807149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.