These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 22766288)
1. Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Kondo T; Nomura K; Murou M; Gemmei-Ide M; Kitano H; Noguchi H; Uosaki K; Ohno K; Saruwatari Y Colloids Surf B Biointerfaces; 2012 Dec; 100():126-32. PubMed ID: 22766288 [TBL] [Abstract][Full Text] [Related]
2. Structure of water at zwitterionic copolymer film-liquid water interfaces as examined by the sum frequency generation method. Kondo T; Nomura K; Gemmei-Ide M; Kitano H; Noguchi H; Uosaki K; Saruwatari Y Colloids Surf B Biointerfaces; 2014 Jan; 113():361-7. PubMed ID: 24121079 [TBL] [Abstract][Full Text] [Related]
3. Sum frequency generation study on the structure of water in the vicinity of an amphoteric polymer brush. Kondo T; Gemmei-Ide M; Kitano H; Ohno K; Noguchi H; Uosaki K Colloids Surf B Biointerfaces; 2012 Mar; 91():215-8. PubMed ID: 22154097 [TBL] [Abstract][Full Text] [Related]
4. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance. Inoue Y; Onodera Y; Ishihara K Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657 [TBL] [Abstract][Full Text] [Related]
5. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
6. Interfacial molecular structures of polyelectrolyte brush in contact with dry nitrogen, water vapor, liquid water, and aqueous electrolyte solution studied by sum frequency generation spectroscopy. Uosaki K; Noguchi H; Yamamoto R; Nihonyanagi S J Am Chem Soc; 2010 Dec; 132(48):17271-6. PubMed ID: 21077685 [TBL] [Abstract][Full Text] [Related]
7. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
8. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
9. Structure of water incorporated in sulfobetaine polymer films as studied by ATR-FTIR. Kitano H; Mori T; Takeuchi Y; Tada S; Gemmei-Ide M; Yokoyama Y; Tanaka M Macromol Biosci; 2005 Apr; 5(4):314-21. PubMed ID: 15818584 [TBL] [Abstract][Full Text] [Related]
10. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Wang M; Yuan J; Huang X; Cai X; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719 [TBL] [Abstract][Full Text] [Related]
11. Silica particles coated with zwitterionic polymer brush: formation of colloidal crystals and anti-biofouling properties in aqueous medium. Suzuki H; Murou M; Kitano H; Ohno K; Saruwatari Y Colloids Surf B Biointerfaces; 2011 May; 84(1):111-6. PubMed ID: 21247739 [TBL] [Abstract][Full Text] [Related]
12. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Kishioka T; Usui Y Colloids Surf B Biointerfaces; 2016 Aug; 144():180-187. PubMed ID: 27085477 [TBL] [Abstract][Full Text] [Related]
13. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Cho WK; Kong B; Choi IS Langmuir; 2007 May; 23(10):5678-82. PubMed ID: 17432887 [TBL] [Abstract][Full Text] [Related]
15. A novel approach for UV-patterning with binary polymer brushes. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833 [TBL] [Abstract][Full Text] [Related]
16. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization. Yameen B; Alvarez M; Azzaroni O; Jonas U; Knoll W Langmuir; 2009 Jun; 25(11):6214-20. PubMed ID: 19271778 [TBL] [Abstract][Full Text] [Related]
17. Direct synthesis of quaternized polymer brushes and their application for guiding neuronal growth. Dong R; Molloy RP; Lindau M; Ober CK Biomacromolecules; 2010 Aug; 11(8):2027-32. PubMed ID: 20690711 [TBL] [Abstract][Full Text] [Related]
18. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Ignatova M; Voccia S; Gilbert B; Markova N; Cossement D; Gouttebaron R; Jérôme R; Jérôme C Langmuir; 2006 Jan; 22(1):255-62. PubMed ID: 16378429 [TBL] [Abstract][Full Text] [Related]
19. Conformational changes of fibrinogen after adsorption. Clarke ML; Wang J; Chen Z J Phys Chem B; 2005 Nov; 109(46):22027-35. PubMed ID: 16853860 [TBL] [Abstract][Full Text] [Related]
20. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. Mondal JA; Nihonyanagi S; Yamaguchi S; Tahara T J Am Chem Soc; 2012 May; 134(18):7842-50. PubMed ID: 22533664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]