BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22766444)

  • 1. Application of organogels as oral controlled release formulations of hydrophilic drugs.
    Iwanaga K; Kawai M; Miyazaki M; Kakemi M
    Int J Pharm; 2012 Oct; 436(1-2):869-72. PubMed ID: 22766444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds.
    Iwanaga K; Sumizawa T; Miyazaki M; Kakemi M
    Int J Pharm; 2010 Mar; 388(1-2):123-8. PubMed ID: 20045041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.
    Pereira Camelo SR; Franceschi S; Perez E; Girod Fullana S; Ré MI
    Drug Dev Ind Pharm; 2016; 42(6):985-97. PubMed ID: 26548427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V; Gupta S; Saini V
    Drug Deliv; 2016 Nov; 23(9):3573-3581. PubMed ID: 27494650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimensional changes, gel layer evolution and drug release studies in hydrophilic matrices loaded with drugs of different solubility.
    Efentakis M; Pagoni I; Vlachou M; Avgoustakis K
    Int J Pharm; 2007 Jul; 339(1-2):66-75. PubMed ID: 17408891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents.
    Esposito CL; Tardif V; Sarrazin M; Kirilov P; Roullin VG
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110999. PubMed ID: 32993979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hot-melt extrusion: in vitro and in vivo evaluation.
    Verhoeven E; Vervaet C; Remon JP
    Eur J Pharm Biopharm; 2006 Jul; 63(3):320-30. PubMed ID: 16517135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembling Organogels Based on Pluronic and Lecithin for Sustained Release of Etodolac: In Vitro and In Vivo Correlation.
    Mohammed AM; Faisal W; Saleh KI; Osman SK
    Curr Drug Deliv; 2017; 14(7):926-934. PubMed ID: 27593184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo sustained-release characteristics of theophylline matrix tablets and novel cluster tablets.
    Hayashi T; Kanbe H; Okada M; Kawase I; Ikeda Y; Onuki Y; Kaneko T; Sonobe T
    Int J Pharm; 2007 Aug; 341(1-2):105-13. PubMed ID: 17512147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment.
    Lamprecht A; Saumet JL; Roux J; Benoit JP
    Int J Pharm; 2004 Jul; 278(2):407-14. PubMed ID: 15196644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulations based on alpha cyclodextrin and soybean oil: an approach to modulate the oral release of lipophilic drugs.
    Hamoudi MC; Bourasset F; Domergue-Dupont V; Gueutin C; Nicolas V; Fattal E; Bochot A
    J Control Release; 2012 Aug; 161(3):861-7. PubMed ID: 22634090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of two new sustained release formulations elaborated by one-step melt granulation: level A in vitro-in vivo correlation.
    Ochoa L; Igartua M; Hernández RM; Solinís MA; Gascón AR; Pedraz JL
    Eur J Pharm Biopharm; 2010 Jun; 75(2):232-7. PubMed ID: 20159037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology.
    Hu B; Yan H; Sun Y; Chen X; Sun Y; Li S; Jing Y; Li H
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):266-275. PubMed ID: 31851842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers.
    Yu DG; Shen XX; Branford-White C; White K; Zhu LM; Bligh SW
    Nanotechnology; 2009 Feb; 20(5):055104. PubMed ID: 19417335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two- and three-layer tablet drug delivery systems for oral sustained release of soluble and poorly soluble drugs.
    Efentakis M; Naseef H; Vlachou M
    Drug Dev Ind Pharm; 2010 Aug; 36(8):903-16. PubMed ID: 20196641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of amorphous microporous silica for ibuprofen controlled release.
    Aerts CA; Verraedt E; Depla A; Follens L; Froyen L; Van Humbeeck J; Augustijns P; Van den Mooter G; Mellaerts R; Martens JA
    Int J Pharm; 2010 Sep; 397(1-2):84-91. PubMed ID: 20619331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sucrose esters with various hydrophilic-lipophilic properties: novel controlled release agents for oral drug delivery matrix tablets prepared by direct compaction.
    Chansanroj K; Betz G
    Acta Biomater; 2010 Aug; 6(8):3101-9. PubMed ID: 20132913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained release of hydrophobic and hydrophilic drugs from a floating dosage form.
    Tang YD; Venkatraman SS; Boey FY; Wang LW
    Int J Pharm; 2007 May; 336(1):159-65. PubMed ID: 17194555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theophylline controlled-release formulations: in vivo-in vitro correlations.
    Yu Z; Schwartz JB; Sugita ET
    Biopharm Drug Dispos; 1996 Apr; 17(3):259-72. PubMed ID: 8983400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetics of ibuprofen following a single administration of a suspension containing enteric-coated microcapsules.
    Walter K; Weiss G; Laicher A; Stanislaus F
    Arzneimittelforschung; 1995 Aug; 45(8):886-90. PubMed ID: 7575754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.