These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 22767244)
1. Microtrap electrode devices for single cell trapping and impedance measurement. Mondal D; Roychaudhuri C; Das L; Chatterjee J Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic device for cell capture and impedance measurement. Jang LS; Wang MH Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285 [TBL] [Abstract][Full Text] [Related]
3. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device. Wang MH; Kao MF; Jang LS Rev Sci Instrum; 2011 Jun; 82(6):064302. PubMed ID: 21721710 [TBL] [Abstract][Full Text] [Related]
4. In vivo O2 measurement inside single photosynthetic cells. Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096 [TBL] [Abstract][Full Text] [Related]
5. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Heileman K; Daoud J; Tabrizian M Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534 [TBL] [Abstract][Full Text] [Related]
6. A new floating electrode structure for generating homogeneous electrical fields in microfluidic channels. Segerink LI; Sprenkels AJ; Bomer JG; Vermes I; van den Berg A Lab Chip; 2011 Jun; 11(12):1995-2001. PubMed ID: 21279234 [TBL] [Abstract][Full Text] [Related]
7. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Mamouni J; Yang L Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766 [TBL] [Abstract][Full Text] [Related]
8. Insulator-based dielectrophoretic single particle and single cancer cell trapping. Bhattacharya S; Chao TC; Ros A Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulation of particle dynamics in an orifice-electrode system. Application to counting and sizing by impedance measurement. Isèbe D; Nérin P Int J Numer Method Biomed Eng; 2013 Apr; 29(4):462-75. PubMed ID: 23349148 [TBL] [Abstract][Full Text] [Related]
10. Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. Sun T; Green NG; Gawad S; Morgan H IET Nanobiotechnol; 2007 Oct; 1(5):69-79. PubMed ID: 17764376 [TBL] [Abstract][Full Text] [Related]
11. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Sadeghi S; Ding H; Shah GJ; Chen S; Keng PY; Kim CJ; van Dam RM Anal Chem; 2012 Feb; 84(4):1915-23. PubMed ID: 22248060 [TBL] [Abstract][Full Text] [Related]
12. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device. Gou HL; Zhang XB; Bao N; Xu JJ; Xia XH; Chen HY J Chromatogr A; 2011 Aug; 1218(33):5725-9. PubMed ID: 21774939 [TBL] [Abstract][Full Text] [Related]
13. Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation. Wang MH; Chang WH Biomed Res Int; 2015; 2015():871603. PubMed ID: 25961043 [TBL] [Abstract][Full Text] [Related]
14. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878 [TBL] [Abstract][Full Text] [Related]
15. Effects of electrode geometry and cell location on single-cell impedance measurement. Wang JW; Wang MH; Jang LS Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465 [TBL] [Abstract][Full Text] [Related]
16. A microwave interferometric system for simultaneous actuation and detection of single biological cells. Ferrier GA; Romanuik SF; Thomson DJ; Bridges GE; Freeman MR Lab Chip; 2009 Dec; 9(23):3406-12. PubMed ID: 19904408 [TBL] [Abstract][Full Text] [Related]
17. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application. Khalili AA; Ahmad MR Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218 [TBL] [Abstract][Full Text] [Related]
18. Optimum design of electrode structure and parameters in electrical impedance tomography. Yan W; Hong S; Chaoshi R Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015 [TBL] [Abstract][Full Text] [Related]
19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
20. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]