These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22767334)

  • 1. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices.
    Yeon JH; Ryu HR; Chung M; Hu QP; Jeon NL
    Lab Chip; 2012 Aug; 12(16):2815-22. PubMed ID: 22767334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bioengineered array of 3D microvessels for vascular permeability assay.
    Lee H; Kim S; Chung M; Kim JH; Jeon NL
    Microvasc Res; 2014 Jan; 91():90-8. PubMed ID: 24333621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling for meshwork formation of endothelial cells in fibrin gels.
    Sasaki D; Nakajima H; Yamaguchi Y; Yokokawa R; Ei SI; Miura T
    J Theor Biol; 2017 Sep; 429():95-104. PubMed ID: 28648563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.
    Wang X; Phan DT; Sobrino A; George SC; Hughes CC; Lee AP
    Lab Chip; 2016 Jan; 16(2):282-90. PubMed ID: 26616908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic vascular-bed devices for vascularized 3D tissue engineering: tissue engineering on a chip.
    Takehara H; Sakaguchi K; Sekine H; Okano T; Shimizu T
    Biomed Microdevices; 2019 Dec; 22(1):9. PubMed ID: 31863202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics within a well: an injection-molded plastic array 3D culture platform.
    Lee Y; Choi JW; Yu J; Park D; Ha J; Son K; Lee S; Chung M; Kim HY; Jeon NL
    Lab Chip; 2018 Aug; 18(16):2433-2440. PubMed ID: 29999064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary-like network formation by human amniotic fluid-derived stem cells within fibrin/poly(ethylene glycol) hydrogels.
    Benavides OM; Quinn JP; Pok S; Petsche Connell J; Ruano R; Jacot JG
    Tissue Eng Part A; 2015 Apr; 21(7-8):1185-94. PubMed ID: 25517426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis.
    Nehls V; Drenckhahn D
    Microvasc Res; 1995 Nov; 50(3):311-22. PubMed ID: 8583947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of perfusable microvascular network morphology using a multiculture microfluidic system.
    Whisler JA; Chen MB; Kamm RD
    Tissue Eng Part C Methods; 2014 Jul; 20(7):543-52. PubMed ID: 24151838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system.
    Hadjizadeh A; Doillon CJ
    J Tissue Eng Regen Med; 2010 Oct; 4(7):524-31. PubMed ID: 20872739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofunctionalized microfiber-assisted formation of intrinsic three-dimensional capillary-like structures.
    Weinandy S; Laffar S; Unger RE; Flanagan TC; Loesel R; Kirkpatrick CJ; van Zandvoort M; Hermanns-Sachweh B; Dreier A; Klee D; Jockenhoevel S
    Tissue Eng Part A; 2014 Jul; 20(13-14):1858-69. PubMed ID: 24456033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional human arterial wall models for in vitro permeability assessment of drug and nanocarriers.
    Chetprayoon P; Matsusaki M; Akashi M
    Biochem Biophys Res Commun; 2015 Jan; 456(1):392-7. PubMed ID: 25475732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro analysis of human periodontal microvascular endothelial cells.
    Tsubokawa M; Sato S
    J Periodontol; 2014 Aug; 85(8):1135-42. PubMed ID: 24283655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis.
    Ko J; Ahn J; Kim S; Lee Y; Lee J; Park D; Jeon NL
    Lab Chip; 2019 Sep; 19(17):2822-2833. PubMed ID: 31360969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gradient-generating microfluidic device for cell biology.
    Chung BG; Manbachi A; Saadi W; Lin F; Jeon NL; Khademhosseini A
    J Vis Exp; 2007; (7):271. PubMed ID: 18989442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molded hyaluronic acid gel as a micro-template for blood capillaries.
    Sugibayashi K; Kumashiro Y; Shimizu T; Kobayashi J; Okano T
    J Biomater Sci Polym Ed; 2013; 24(2):135-47. PubMed ID: 23565594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.