BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22768121)

  • 1. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.
    Arnusch CJ; Pieters RJ; Breukink E
    PLoS One; 2012; 7(6):e39768. PubMed ID: 22768121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity.
    Tachi T; Epand RF; Epand RM; Matsuzaki K
    Biochemistry; 2002 Aug; 41(34):10723-31. PubMed ID: 12186559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides.
    Arnusch CJ; Branderhorst H; de Kruijff B; Liskamp RM; Breukink E; Pieters RJ
    Biochemistry; 2007 Nov; 46(46):13437-42. PubMed ID: 17944489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro.
    Maher S; McClean S
    Biochem Pharmacol; 2006 Apr; 71(9):1289-98. PubMed ID: 16530733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization.
    Wade HM; Darling LEO; Elmore DE
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182980. PubMed ID: 31067436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic.
    Breukink E; Wiedemann I; van Kraaij C; Kuipers OP; Sahl HG; de Kruijff B
    Science; 1999 Dec; 286(5448):2361-4. PubMed ID: 10600751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs.
    Lee JK; Gopal R; Park SC; Ko HS; Kim Y; Hahm KS; Park Y
    PLoS One; 2013; 8(7):e67597. PubMed ID: 23935838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue.
    Dempsey CE; Ueno S; Avison MB
    Biochemistry; 2003 Jan; 42(2):402-9. PubMed ID: 12525167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magainins as paradigm for the mode of action of pore forming polypeptides.
    Matsuzaki K
    Biochim Biophys Acta; 1998 Nov; 1376(3):391-400. PubMed ID: 9804997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptoid-Substituted Hybrid Antimicrobial Peptide Derived from Papiliocin and Magainin 2 with Enhanced Bacterial Selectivity and Anti-inflammatory Activity.
    Shin A; Lee E; Jeon D; Park YG; Bang JK; Park YS; Shin SY; Kim Y
    Biochemistry; 2015 Jun; 54(25):3921-31. PubMed ID: 26053120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence and Absorbance Spectroscopy Methods to Study Membrane Perturbations by Antimicrobial Host Defense Peptides.
    Arias M; Vogel HJ
    Methods Mol Biol; 2017; 1548():141-157. PubMed ID: 28013502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections.
    Pandit G; Biswas K; Ghosh S; Debnath S; Bidkar AP; Satpati P; Bhunia A; Chatterjee S
    Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183177. PubMed ID: 31954105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides.
    Mai XT; Huang J; Tan J; Huang Y; Chen Y
    J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Peptide CMA3 Derived from the CA-MA Hybrid Peptide: Antibacterial and Anti-inflammatory Activities with Low Cytotoxicity and Mechanism of Action in Escherichia coli.
    Lee JK; Seo CH; Luchian T; Park Y
    Antimicrob Agents Chemother; 2016 Jan; 60(1):495-506. PubMed ID: 26552969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78).
    Lee DK; Brender JR; Sciacca MF; Krishnamoorthy J; Yu C; Ramamoorthy A
    Biochemistry; 2013 May; 52(19):3254-63. PubMed ID: 23590672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.