These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 22768130)
1. A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. Sloane PA; Shastry S; Wilhelm A; Courville C; Tang LP; Backer K; Levin E; Raju SV; Li Y; Mazur M; Byan-Parker S; Grizzle W; Sorscher EJ; Dransfield MT; Rowe SM PLoS One; 2012; 7(6):e39809. PubMed ID: 22768130 [TBL] [Abstract][Full Text] [Related]
2. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Raju SV; Lin VY; Liu L; McNicholas CM; Karki S; Sloane PA; Tang L; Jackson PL; Wang W; Wilson L; Macon KJ; Mazur M; Kappes JC; DeLucas LJ; Barnes S; Kirk K; Tearney GJ; Rowe SM Am J Respir Cell Mol Biol; 2017 Jan; 56(1):99-108. PubMed ID: 27585394 [TBL] [Abstract][Full Text] [Related]
3. Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Lambert JA; Raju SV; Tang LP; McNicholas CM; Li Y; Courville CA; Farris RF; Coricor GE; Smoot LH; Mazur MM; Dransfield MT; Bolger GB; Rowe SM Am J Respir Cell Mol Biol; 2014 Mar; 50(3):549-58. PubMed ID: 24106801 [TBL] [Abstract][Full Text] [Related]
4. Resveratrol and ivacaftor are additive G551D CFTR-channel potentiators: therapeutic implications for cystic fibrosis sinus disease. Cho DY; Zhang S; Lazrak A; Grayson JW; Peña Garcia JA; Skinner DF; Lim DJ; Mackey C; Banks C; Matalon S; Woodworth BA Int Forum Allergy Rhinol; 2019 Jan; 9(1):100-105. PubMed ID: 30152192 [TBL] [Abstract][Full Text] [Related]
5. Comparison of a novel potentiator of CFTR channel activity to ivacaftor in ameliorating mucostasis caused by cigarette smoke in primary human bronchial airway epithelial cells. Tanjala AC; Jiang JX; Eckford PDW; Ramjeesingh M; Li C; Huan LJ; Langeveld G; Townsend C; Paone DV; Busch-Petersen J; Pekhletski R; Tang L; Raju V; Rowe SM; Bear CE Respir Res; 2024 Jul; 25(1):269. PubMed ID: 38982492 [TBL] [Abstract][Full Text] [Related]
6. Ivacaftor restores delayed mucociliary transport caused by Pseudomonas aeruginosa-induced acquired cystic fibrosis transmembrane conductance regulator dysfunction in rabbit nasal epithelia. Cho DY; Zhang S; Skinner DF; Lim DJ; Banks C; Grayson JW; Tearney GJ; Rowe SM; Woodworth BA Int Forum Allergy Rhinol; 2022 May; 12(5):690-698. PubMed ID: 34704673 [TBL] [Abstract][Full Text] [Related]
7. Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency. Woodworth BA Laryngoscope; 2015 Oct; 125 Suppl 7(0 7):S1-S13. PubMed ID: 25946147 [TBL] [Abstract][Full Text] [Related]
8. Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis. Abou Alaiwa MH; Launspach JL; Grogan B; Carter S; Zabner J; Stoltz DA; Singh PK; McKone EF; Welsh MJ JCI Insight; 2018 Aug; 3(15):. PubMed ID: 30089726 [TBL] [Abstract][Full Text] [Related]
9. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis. Patel S; Sinha IP; Dwan K; Echevarria C; Schechter M; Southern KW Cochrane Database Syst Rev; 2015 Mar; (3):CD009841. PubMed ID: 25811419 [TBL] [Abstract][Full Text] [Related]
13. ORKAMBI-Mediated Rescue of Mucociliary Clearance in Cystic Fibrosis Primary Respiratory Cultures Is Enhanced by Arginine Uptake, Arginase Inhibition, and Promotion of Nitric Oxide Signaling to the Cystic Fibrosis Transmembrane Conductance Regulator Channel. Wu YS; Jiang J; Ahmadi S; Lew A; Laselva O; Xia S; Bartlett C; Ip W; Wellhauser L; Ouyang H; Gonska T; Moraes TJ; Bear CE Mol Pharmacol; 2019 Oct; 96(4):515-525. PubMed ID: 31427400 [TBL] [Abstract][Full Text] [Related]
14. Combination therapy with cystic fibrosis transmembrane conductance regulator modulators augment the airway functional microanatomy. Birket SE; Chu KK; Houser GH; Liu L; Fernandez CM; Solomon GM; Lin V; Shastry S; Mazur M; Sloane PA; Hanes J; Grizzle WE; Sorscher EJ; Tearney GJ; Rowe SM Am J Physiol Lung Cell Mol Physiol; 2016 May; 310(10):L928-39. PubMed ID: 26968770 [TBL] [Abstract][Full Text] [Related]
15. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Dransfield MT; Wilhelm AM; Flanagan B; Courville C; Tidwell SL; Raju SV; Gaggar A; Steele C; Tang LP; Liu B; Rowe SM Chest; 2013 Aug; 144(2):498-506. PubMed ID: 23538783 [TBL] [Abstract][Full Text] [Related]
16. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Van Goor F; Hadida S; Grootenhuis PD; Burton B; Cao D; Neuberger T; Turnbull A; Singh A; Joubran J; Hazlewood A; Zhou J; McCartney J; Arumugam V; Decker C; Yang J; Young C; Olson ER; Wine JJ; Frizzell RA; Ashlock M; Negulescu P Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18825-30. PubMed ID: 19846789 [TBL] [Abstract][Full Text] [Related]
17. Modulator Combination Improves In Vitro the Microrheological Properties of the Airway Surface Liquid of Cystic Fibrosis Airway Epithelia. Ludovico A; Moran O; Baroni D Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232697 [TBL] [Abstract][Full Text] [Related]
18. TMEM16A Potentiation: A Novel Therapeutic Approach for the Treatment of Cystic Fibrosis. Danahay HL; Lilley S; Fox R; Charlton H; Sabater J; Button B; McCarthy C; Collingwood SP; Gosling M Am J Respir Crit Care Med; 2020 Apr; 201(8):946-954. PubMed ID: 31898911 [No Abstract] [Full Text] [Related]
19. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate. Lin WY; Sohma Y; Hwang TC Mol Pharmacol; 2016 Sep; 90(3):275-85. PubMed ID: 27413118 [TBL] [Abstract][Full Text] [Related]