BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22768143)

  • 21. Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer.
    Guan ZW; Haque MM; Wei CC; Garcin ED; Getzoff ED; Stuehr DJ
    J Biol Chem; 2010 Jan; 285(5):3064-75. PubMed ID: 19948738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for endothelial nitric oxide synthase binding to calmodulin.
    Aoyagi M; Arvai AS; Tainer JA; Getzoff ED
    EMBO J; 2003 Feb; 22(4):766-75. PubMed ID: 12574113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII.
    Evans TI; Shea MA
    Proteins; 2009 Jul; 76(1):47-61. PubMed ID: 19089983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases.
    Venema RC; Sayegh HS; Kent JD; Harrison DG
    J Biol Chem; 1996 Mar; 271(11):6435-40. PubMed ID: 8626444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase.
    Tiso M; Konas DW; Panda K; Garcin ED; Sharma M; Getzoff ED; Stuehr DJ
    J Biol Chem; 2005 Nov; 280(47):39208-19. PubMed ID: 16150731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90.
    Takahashi S; Mendelsohn ME
    J Biol Chem; 2003 Mar; 278(11):9339-44. PubMed ID: 12519764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reductase domain of the human inducible nitric oxide synthase is fully active in the absence of bound calmodulin.
    Newton DC; Montgomery HJ; Guillemette JG
    Arch Biochem Biophys; 1998 Nov; 359(2):249-57. PubMed ID: 9808767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mechanisms of regulation by calmodulin of nitric oxide synthase].
    Gervaziev IuV; Sokolov NN
    Vopr Med Khim; 1999; 45(3):187-99. PubMed ID: 10432553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calmodulin-induced structural changes in endothelial nitric oxide synthase.
    Persechini A; Tran QK; Black DJ; Gogol EP
    FEBS Lett; 2013 Jan; 587(3):297-301. PubMed ID: 23266515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
    Guan ZW; Iyanagi T
    Arch Biochem Biophys; 2003 Apr; 412(1):65-76. PubMed ID: 12646269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transfer by neuronal nitric-oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements.
    Roman LJ; Masters BS
    J Biol Chem; 2006 Aug; 281(32):23111-8. PubMed ID: 16782703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Holoenzyme structures of endothelial nitric oxide synthase - an allosteric role for calmodulin in pivoting the FMN domain for electron transfer.
    Volkmann N; Martásek P; Roman LJ; Xu XP; Page C; Swift M; Hanein D; Masters BS
    J Struct Biol; 2014 Oct; 188(1):46-54. PubMed ID: 25175399
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rate, affinity and calcium dependence of nitric oxide synthase isoform binding to the primary physiological regulator calmodulin.
    McMurry JL; Chrestensen CA; Scott IM; Lee EW; Rahn AM; Johansen AM; Forsberg BJ; Harris KD; Salerno JC
    FEBS J; 2011 Dec; 278(24):4943-54. PubMed ID: 22004458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of electron transfer in neuronal NO synthase.
    Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T
    Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tyrosine nitration on calmodulin enhances calcium-dependent association and activation of nitric-oxide synthase.
    Porter JJ; Jang HS; Haque MM; Stuehr DJ; Mehl RA
    J Biol Chem; 2020 Feb; 295(8):2203-2211. PubMed ID: 31914408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and biophysical characterization of a plant calmodulin: Role of the N- and C-lobes in calcium binding, conformational change, and target interaction.
    Astegno A; La Verde V; Marino V; Dell'Orco D; Dominici P
    Biochim Biophys Acta; 2016 Mar; 1864(3):297-307. PubMed ID: 26708477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of constitutive nitric oxide synthases by oxidized calmodulin mutants.
    Montgomery HJ; Bartlett R; Perdicakis B; Jervis E; Squier TC; Guillemette JG
    Biochemistry; 2003 Jul; 42(25):7759-68. PubMed ID: 12820885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics study of in silico mutations in the auto-inhibitory loop of human endothelial nitric oxide synthase FMN sub-domain.
    Preethi D; Anishetty S; Gautam P
    J Mol Model; 2021 Feb; 27(2):63. PubMed ID: 33527205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.