BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22769016)

  • 1. On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation.
    Jahya A; Schouten MG; Fütterer JJ; Misra S
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):497-506. PubMed ID: 22769016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework for predicting three-dimensional prostate deformation in real time.
    Jahya A; Herink M; Misra S
    Int J Med Robot; 2013 Dec; 9(4):e52-60. PubMed ID: 23495193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining ultrasound-based elasticity estimation and FE models to predict 3D target displacement.
    Assaad W; Misra S
    Med Eng Phys; 2013 Apr; 35(4):549-54. PubMed ID: 23218758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of organ geometry and boundary constraints for planning of medical interventions.
    Misra S; Macura KJ; Ramesh KT; Okamura AM
    Med Eng Phys; 2009 Mar; 31(2):195-206. PubMed ID: 18815068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting target displacements using ultrasound elastography and finite element modeling.
    op den Buijs J; Hansen HH; Lopata RG; de Korte CL; Misra S
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3143-55. PubMed ID: 21846601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models.
    Chi Y; Liang J; Yan D
    Med Phys; 2006 Feb; 33(2):421-33. PubMed ID: 16532950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning.
    Hensel JM; Ménard C; Chung PW; Milosevic MF; Kirilova A; Moseley JL; Haider MA; Brock KK
    Int J Radiat Oncol Biol Phys; 2007 Aug; 68(5):1522-8. PubMed ID: 17674983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF
    Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
    Mohammadi A; Ahmadian A; Azar AD; Sheykh AD; Amiri F; Alirezaie J
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1753-64. PubMed ID: 25958061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of global boundary effects on harmonic motion imaging of soft tissues.
    Zhao X; Pelegri AA
    Comput Methods Biomech Biomed Engin; 2014; 17(9):1021-31. PubMed ID: 23167660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy.
    Shirzadi Z; Sadeghi-Naini A; Samani A
    Med Phys; 2013 May; 40(5):051902. PubMed ID: 23635272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy.
    van de Ven WJ; Hu Y; Barentsz JO; Karssemeijer N; Barratt D; Huisman HJ
    Med Phys; 2015 May; 42(5):2470-81. PubMed ID: 25979040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target motion predictions for pre-operative planning during needle-based interventions.
    op den Buijs J; Abayazid M; de Korte CL; Misra S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5380-5. PubMed ID: 22255554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards clinical prostate ultrasound elastography using full inversion approach.
    Mousavi SR; Sadeghi-Naini A; Czarnota GJ; Samani A
    Med Phys; 2014 Mar; 41(3):033501. PubMed ID: 24593743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation and experiment of soft-tissue deformation in prostate brachytherapy.
    Liang D; Jiang S; Yang Z; Wang X
    Proc Inst Mech Eng H; 2016 Jun; 230(6):532-44. PubMed ID: 27129384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion.
    Ukimura O; Desai MM; Palmer S; Valencerina S; Gross M; Abreu AL; Aron M; Gill IS
    J Urol; 2012 Mar; 187(3):1080-6. PubMed ID: 22266005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain shift computation using a fully nonlinear biomechanical model.
    Wittek A; Kikinis R; Warfield SK; Miller K
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):583-90. PubMed ID: 16686007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific model of brain deformation: application to medical image registration.
    Wittek A; Miller K; Kikinis R; Warfield SK
    J Biomech; 2007; 40(4):919-29. PubMed ID: 16678834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element simulation of interactions between pelvic organs: predictive model of the prostate motion in the context of radiotherapy.
    Boubaker MB; Haboussi M; Ganghoffer JF; Aletti P
    J Biomech; 2009 Aug; 42(12):1862-8. PubMed ID: 19559437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.