BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22769432)

  • 1. Predominance of the participation of the geminal over vicinal bonds: torquoselectivity of retro-Nazarov reactions.
    Naruse Y; Ichihashi Y; Shimizu T; Inagaki S
    Org Lett; 2012 Jul; 14(14):3728-31. PubMed ID: 22769432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An orbital phase theory for the torquoselectivity of the ring-opening reactions of 3-substituted cyclobutenes: geminal bond participation.
    Yasui M; Naruse Y; Inagaki S
    J Org Chem; 2004 Oct; 69(21):7246-9. PubMed ID: 15471476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mono-, Di-, and Trifluoroalkyl Substituent Effects on the Torquoselectivities of Cyclobutene and Oxetene Electrocyclic Ring Openings.
    Honda K; Lopez SA; Houk KN; Mikami K
    J Org Chem; 2015 Dec; 80(23):11768-72. PubMed ID: 26301819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of inward torquoselectivity by silyl groups and other sigma-acceptors in electrocyclic reactions of cyclobutenes.
    Lee PS; Zhang X; Houk KN
    J Am Chem Soc; 2003 Apr; 125(17):5072-9. PubMed ID: 12708857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined computational and experimental studies of the mechanism and scope of the retro-Nazarov reaction.
    Harmata M; Schreiner PR; Lee DR; Kirchhoefer PL
    J Am Chem Soc; 2004 Sep; 126(35):10954-7. PubMed ID: 15339180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituent effects on rates and torquoselectivities of electrocyclic ring-openings of N-substituted 2-azetines.
    Lopez SA; Houk KN
    J Org Chem; 2014 Jul; 79(13):6189-95. PubMed ID: 24885772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered torquoselectivity of fluorine in the iron-tricarbonyl-mediated thermal ring opening of 3-fluorocyclobutene: a density-functional exploration.
    Prathipa C; Akilandeswari L
    J Mol Model; 2016 Nov; 22(11):266. PubMed ID: 27752858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic control of the electrocyclic ring opening of cyclobutenes: C=X substituents at C-3 mask the kinetic torquoselectivity.
    Um JM; Xu H; Houk KN; Tang W
    J Am Chem Soc; 2009 May; 131(19):6664-5. PubMed ID: 19402639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lewis Acid Induced Switch of Torquoselectivity in the Nazarov Cyclization of Activated Dienones Bearing a Chiral Sulfoxide.
    Grenet E; Martínez J; Salom-Roig XJ
    Chemistry; 2016 Nov; 22(47):16770-16773. PubMed ID: 27618730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torquoselectivity in Cyclobutene Ring Openings and the Interatomic Interactions That Control Them.
    Barquera-Lozada JE
    J Phys Chem A; 2016 Oct; 120(42):8450-8460. PubMed ID: 27723338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting reactivity and stereoselectivity in the Nazarov reaction: a combined computational and experimental study.
    Cavalli A; Pacetti A; Recanatini M; Prandi C; Scarpi D; Occhiato EG
    Chemistry; 2008; 14(30):9292-304. PubMed ID: 18752233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry and conformation of cyclopropane derivatives having σ-acceptor and σ-donor substituents: a theoretical and crystal structure database study.
    Cruz-Cabeza AJ; Allen FH
    Acta Crystallogr B; 2012 Apr; 68(Pt 2):182-8. PubMed ID: 22436917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposing auxiliary conformations produce the same torquoselectivity in an oxazolidinone-directed Nazarov cyclization.
    Flynn BL; Manchala N; Krenske EH
    J Am Chem Soc; 2013 Jun; 135(24):9156-63. PubMed ID: 23758343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Remote Substituents on the Torquoselectivity of 3-Silyl Cyclobutene-Derivatives Ring-Opening Reactions.
    Larrañaga O; de Cózar A
    Chemphyschem; 2020 Aug; 21(16):1805-1813. PubMed ID: 32602631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvolytic ring-opening reactions of cyclopropyl bromides. An assessment of the Woodward-Hoffmann-DePuy rule.
    Faza ON; López CS; Alvarez R; de Lera AR
    J Org Chem; 2004 Dec; 69(26):9002-10. PubMed ID: 15609932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hiscotropic rearrangements: hybrids of electrocyclic and sigmatropic reactions.
    Nouri DH; Tantillo DJ
    J Org Chem; 2006 May; 71(10):3686-95. PubMed ID: 16674038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torquoselectivity induced by lone-pair conjugation in the electrocyclic reactions of 1-azapolyenes.
    Walker MJ; Hietbrink BN; Thomas BE; Nakamura K; Kallel EA; Houk KN
    J Org Chem; 2001 Oct; 66(20):6669-72. PubMed ID: 11578219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent-dependent negative hyperconjugation in 2-aryl-1,3-N,N-heterocycles. fine-tuned anomeric effect?
    Hetényi A; Martinek TA; Lázár L; Zalán Z; Fülöp F
    J Org Chem; 2003 Jul; 68(14):5705-12. PubMed ID: 12839466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torquoselectivity in the cationic cyclopentannelation of (2Z)-hexa-2,4,5-trienal acetals.
    Iglesias B; de Lera AR; Rodríguez-Otero J; López S
    Chemistry; 2000 Nov; 6(21):4021-33. PubMed ID: 11126965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational investigation towards substitution effects on 8π electrocyclisation of conjugated 1,3,5,7-octatetraenes.
    Arfan NHBZ; Hamid MHSA; Sheikh NS
    RSC Adv; 2023 Oct; 13(44):30787-30797. PubMed ID: 37869396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.