These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 22769741)
61. Distinct roles of P(II)-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72. Martin DE; Reinhold-Hurek B J Bacteriol; 2002 Apr; 184(8):2251-9. PubMed ID: 11914357 [TBL] [Abstract][Full Text] [Related]
62. Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Jiang P; Peliska JA; Ninfa AJ Biochemistry; 1998 Sep; 37(37):12782-94. PubMed ID: 9737855 [TBL] [Abstract][Full Text] [Related]
63. Identification of the Klebsiella pneumoniae glnB gene: nucleotide sequence of wild-type and mutant alleles. Holtel A; Merrick M Mol Gen Genet; 1988 Dec; 215(1):134-8. PubMed ID: 2907369 [TBL] [Abstract][Full Text] [Related]
64. Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP J Bacteriol; 2009 Sep; 191(17):5526-37. PubMed ID: 19542280 [TBL] [Abstract][Full Text] [Related]
65. Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Jiang P; Ninfa AJ Biochemistry; 2007 Nov; 46(45):12979-96. PubMed ID: 17939683 [TBL] [Abstract][Full Text] [Related]
66. Modification of a glnB-like gene product by photosynthetic electron transport in the cyanobacterium Synechococcus 6301. Harrison MA; Keen JN; Findlay JB; Allen JF FEBS Lett; 1990 May; 264(1):25-8. PubMed ID: 2110911 [TBL] [Abstract][Full Text] [Related]
67. The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. Forchhammer K; Tandeau de Marsac N J Bacteriol; 1994 Jan; 176(1):84-91. PubMed ID: 8282715 [TBL] [Abstract][Full Text] [Related]
68. An additional PII in Escherichia coli: a new regulatory protein in the glutamine synthetase cascade. van Heeswijk WC; Stegeman B; Hoving S; Molenaar D; Kahn D; Westerhoff HV FEMS Microbiol Lett; 1995 Oct; 132(1-2):153-7. PubMed ID: 7590157 [TBL] [Abstract][Full Text] [Related]
69. Haloferax mediterranei GlnK proteins are post-translationally modified by uridylylation. Pedro-Roig L; Camacho M; Bonete MJ Proteomics; 2013 Apr; 13(8):1371-4. PubMed ID: 23420616 [TBL] [Abstract][Full Text] [Related]
70. The Nitrogen Regulatory PII Protein (GlnB) and Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699 [TBL] [Abstract][Full Text] [Related]
71. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli. Jiang P; Ninfa AJ Biochemistry; 2011 Dec; 50(50):10929-40. PubMed ID: 22085244 [TBL] [Abstract][Full Text] [Related]
72. PII Signal Transduction Protein GlnK Alleviates Feedback Inhibition of Xu M; Tang M; Chen J; Yang T; Zhang X; Shao M; Xu Z; Rao Z Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060028 [TBL] [Abstract][Full Text] [Related]
73. Association and dissociation of the GlnK-AmtB complex in response to cellular nitrogen status can occur in the absence of GlnK post-translational modification. Radchenko MV; Thornton J; Merrick M Front Microbiol; 2014; 5():731. PubMed ID: 25566239 [TBL] [Abstract][Full Text] [Related]
74. Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC). Atkinson MR; Kamberov ES; Weiss RL; Ninfa AJ J Biol Chem; 1994 Nov; 269(45):28288-93. PubMed ID: 7961766 [TBL] [Abstract][Full Text] [Related]
75. The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. van Heeswijk WC; Rabenberg M; Westerhoff HV; Kahn D Mol Microbiol; 1993 Aug; 9(3):443-57. PubMed ID: 8412694 [TBL] [Abstract][Full Text] [Related]
76. Proteomic Insights into Starvation of Nitrogen-Replete Cells of Koksharova OA; Butenko IO; Pobeguts OV; Safronova NA; Govorun VM Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32512731 [TBL] [Abstract][Full Text] [Related]
77. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Zhang Y; Pohlmann EL; Conrad MC; Roberts GP Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025 [TBL] [Abstract][Full Text] [Related]
78. Crystal structure of the C-terminal domain of the two-component system transmitter protein nitrogen regulator II (NRII; NtrB), regulator of nitrogen assimilation in Escherichia coli. Song Y; Peisach D; Pioszak AA; Xu Z; Ninfa AJ Biochemistry; 2004 Jun; 43(21):6670-8. PubMed ID: 15157101 [TBL] [Abstract][Full Text] [Related]
79. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro. Jonsson A; Teixeira PF; Nordlund S FEBS J; 2007 May; 274(10):2449-60. PubMed ID: 17419734 [TBL] [Abstract][Full Text] [Related]
80. Post-translational modification of P II signal transduction proteins. Merrick M Front Microbiol; 2014; 5():763. PubMed ID: 25610437 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]