BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 22770219)

  • 1. Acetylation-dependent regulation of Skp2 function.
    Inuzuka H; Gao D; Finley LW; Yang W; Wan L; Fukushima H; Chin YR; Zhai B; Shaik S; Lau AW; Wang Z; Gygi SP; Nakayama K; Teruya-Feldstein J; Toker A; Haigis MC; Pandolfi PP; Wei W
    Cell; 2012 Jul; 150(1):179-93. PubMed ID: 22770219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2.
    Wang Z; Inuzuka H; Zhong J; Liu P; Sarkar FH; Sun Y; Wei W
    Oncotarget; 2012 Nov; 3(11):1294-300. PubMed ID: 23230084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction.
    Gao D; Inuzuka H; Tseng A; Chin RY; Toker A; Wei W
    Nat Cell Biol; 2009 Apr; 11(4):397-408. PubMed ID: 19270695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological inhibition of the SKP2/p300 signaling axis restricts castration-resistant prostate cancer.
    Rezaeian AH; Phan LM; Zhou X; Wei W; Inuzuka H
    Neoplasia; 2023 Apr; 38():100890. PubMed ID: 36871351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippo Signaling Suppresses Cell Ploidy and Tumorigenesis through Skp2.
    Zhang S; Chen Q; Liu Q; Li Y; Sun X; Hong L; Ji S; Liu C; Geng J; Zhang W; Lu Z; Yin ZY; Zeng Y; Lin KH; Wu Q; Li Q; Nakayama K; Nakayama KI; Deng X; Johnson RL; Zhu L; Gao D; Chen L; Zhou D
    Cancer Cell; 2017 May; 31(5):669-684.e7. PubMed ID: 28486106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer.
    Lu W; Liu S; Li B; Xie Y; Izban MG; Ballard BR; Sathyanarayana SA; Adunyah SE; Matusik RJ; Chen Z
    Oncogene; 2017 Mar; 36(10):1364-1373. PubMed ID: 27869166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavokawain A induces deNEDDylation and Skp2 degradation leading to inhibition of tumorigenesis and cancer progression in the TRAMP transgenic mouse model.
    Li X; Yokoyama NN; Zhang S; Ding L; Liu HM; Lilly MB; Mercola D; Zi X
    Oncotarget; 2015 Dec; 6(39):41809-24. PubMed ID: 26497688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skp2 suppresses p53-dependent apoptosis by inhibiting p300.
    Kitagawa M; Lee SH; McCormick F
    Mol Cell; 2008 Feb; 29(2):217-31. PubMed ID: 18243116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent.
    Wei S; Chu PC; Chuang HC; Hung WC; Kulp SK; Chen CS
    PLoS One; 2012; 7(10):e47298. PubMed ID: 23071779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation.
    Wang F; Chan CH; Chen K; Guan X; Lin HK; Tong Q
    Oncogene; 2012 Mar; 31(12):1546-57. PubMed ID: 21841822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination.
    Lu W; Liu S; Li B; Xie Y; Adhiambo C; Yang Q; Ballard BR; Nakayama KI; Matusik RJ; Chen Z
    Oncotarget; 2015 Jan; 6(2):771-88. PubMed ID: 25596733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade.
    Mickova A; Kharaishvili G; Kurfurstova D; Gachechiladze M; Kral M; Vacek O; Pokryvkova B; Mistrik M; Soucek K; Bouchal J
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of the APCCdh1-Skp2 cascade in breast cancer.
    Fujita T; Liu W; Doihara H; Date H; Wan Y
    Clin Cancer Res; 2008 Apr; 14(7):1966-75. PubMed ID: 18381934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Chemical Inhibitor of the Skp2/p300 Interaction that Promotes p53-Mediated Apoptosis.
    Oh M; Lee JH; Moon H; Hyun YJ; Lim HS
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):602-6. PubMed ID: 26593157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth.
    Tsai YS; Lai CL; Lai CH; Chang KH; Wu K; Tseng SF; Fazli L; Gleave M; Xiao G; Gandee L; Sharifi N; Moro L; Tzai TS; Hsieh JT
    Oncotarget; 2014 Aug; 5(15):6425-36. PubMed ID: 25115390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth.
    Zhou L; Yu X; Li M; Gong G; Liu W; Li T; Zuo H; Li W; Gao F; Liu H
    EBioMedicine; 2020 Jan; 51():102570. PubMed ID: 31806563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear translocation of Skp2 facilitates its destruction in response to TGFβ signaling.
    Hu D; Liu W; Wu G; Wan Y
    Cell Cycle; 2011 Jan; 10(2):285-92. PubMed ID: 21212736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between protein acetylation and ubiquitination controls MCL1 protein stability.
    Shimizu K; Gi M; Suzuki S; North BJ; Watahiki A; Fukumoto S; Asara JM; Tokunaga F; Wei W; Inuzuka H
    Cell Rep; 2021 Nov; 37(6):109988. PubMed ID: 34758305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic Skp2 expression is associated with p-Akt1 and predicts poor prognosis in human breast carcinomas.
    Liu J; Wei XL; Huang WH; Chen CF; Bai JW; Zhang GJ
    PLoS One; 2012; 7(12):e52675. PubMed ID: 23300741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway.
    Foster JS; Fernando RI; Ishida N; Nakayama KI; Wimalasena J
    J Biol Chem; 2003 Oct; 278(42):41355-66. PubMed ID: 12904306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.