These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 22770515)
1. Injection of CO2-saturated water through a siliceous sandstone plug from the Hontomin test site (Spain): experiment and modeling. Canal J; Delgado J; Falcón I; Yang Q; Juncosa R; Barrientos V Environ Sci Technol; 2013 Jan; 47(1):159-67. PubMed ID: 22770515 [TBL] [Abstract][Full Text] [Related]
2. Effect of Mineral Dissolution/Precipitation and CO Xu R; Li R; Ma J; He D; Jiang P Acc Chem Res; 2017 Sep; 50(9):2056-2066. PubMed ID: 28812872 [TBL] [Abstract][Full Text] [Related]
3. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone. Sell K; Enzmann F; Kersten M; Spangenberg E Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476 [TBL] [Abstract][Full Text] [Related]
4. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions. Carroll SA; McNab WW; Dai Z; Torres SC Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684 [TBL] [Abstract][Full Text] [Related]
5. Pore-Scale Geochemical Reactivity Associated with CO Noiriel C; Daval D Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082 [TBL] [Abstract][Full Text] [Related]
6. Residual CO2 trapping in Indiana limestone. El-Maghraby RM; Blunt MJ Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314 [TBL] [Abstract][Full Text] [Related]
7. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites. Yang C; Dai Z; Romanak KD; Hovorka SD; Treviño RH Environ Sci Technol; 2014; 48(5):2798-806. PubMed ID: 24494823 [TBL] [Abstract][Full Text] [Related]
8. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. Gouze P; Luquot L J Contam Hydrol; 2011 Mar; 120-121():45-55. PubMed ID: 20797806 [TBL] [Abstract][Full Text] [Related]
9. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties. Qajar J; Arns CH J Contam Hydrol; 2017 Sep; 204():11-27. PubMed ID: 28822588 [TBL] [Abstract][Full Text] [Related]
10. Simulation of CO2-water-rock interactions on geologic CO2 sequestration under geological conditions of China. Wang T; Wang H; Zhang F; Xu T Mar Pollut Bull; 2013 Nov; 76(1-2):307-14. PubMed ID: 24035426 [TBL] [Abstract][Full Text] [Related]
11. In situ determination of interfacial energies between heterogeneously nucleated CaCO3 and quartz substrates: thermodynamics of CO2 mineral trapping. Fernandez-Martinez A; Hu Y; Lee B; Jun YS; Waychunas GA Environ Sci Technol; 2013 Jan; 47(1):102-9. PubMed ID: 22646799 [TBL] [Abstract][Full Text] [Related]
12. Full-Scale Experimental Study on the Effect of CO Wang C; Cui M; Wang K; Wei Y; Wang K; Gao H ACS Omega; 2023 Apr; 8(13):11897-11907. PubMed ID: 37033826 [TBL] [Abstract][Full Text] [Related]
13. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration. Wang S; Edwards IM; Clarens AF Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395 [TBL] [Abstract][Full Text] [Related]
14. Pore Structure Changes Occur During CO Seyyedi M; Mahmud HKB; Verrall M; Giwelli A; Esteban L; Ghasemiziarani M; Clennell B Sci Rep; 2020 Feb; 10(1):3624. PubMed ID: 32107400 [TBL] [Abstract][Full Text] [Related]
15. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels. Kim Y; Wan J; Kneafsey TJ; Tokunaga TK Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561 [TBL] [Abstract][Full Text] [Related]
16. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide. Loring JS; Thompson CJ; Zhang C; Wang Z; Schaef HT; Rosso KM J Phys Chem A; 2012 May; 116(19):4768-77. PubMed ID: 22533532 [TBL] [Abstract][Full Text] [Related]
17. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. Huntzinger DN; Gierke JS; Sutter LL; Kawatra SK; Eisele TC J Hazard Mater; 2009 Aug; 168(1):31-7. PubMed ID: 19269085 [TBL] [Abstract][Full Text] [Related]
18. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Zhang C; Oostrom M; Grate JW; Wietsma TW; Warner MG Environ Sci Technol; 2011 Sep; 45(17):7581-8. PubMed ID: 21774502 [TBL] [Abstract][Full Text] [Related]
19. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash. Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389 [TBL] [Abstract][Full Text] [Related]
20. Geochemical evaluation of Washita-Fredericksburg formation as a carbon storage reservoir. Lopez Rivera NV; Beckingham LE J Contam Hydrol; 2024 Jul; 265():104393. PubMed ID: 38945075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]