These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22770527)

  • 1. Resonance Raman spectra of TNT and RDX using vibronic theory, excited-state gradient, and complex polarizability approximations.
    Al-Saidi WA; Asher SA; Norman P
    J Phys Chem A; 2012 Aug; 116(30):7862-72. PubMed ID: 22770527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the resonance Raman spectra and excitation profiles of a monometallic ruthenium(II) [Ru(bpy)2(HAT)]2+ complex by time-dependent density functional theory.
    Guthmuller J; Champagne B; Moucheron C; Kirsch-De Mesmaeker A
    J Phys Chem B; 2010 Jan; 114(1):511-20. PubMed ID: 19839617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects.
    Guthmuller J; Champagne B
    J Phys Chem A; 2008 Apr; 112(14):3215-23. PubMed ID: 18327928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.
    Gares KL; Bykov SV; Godugu B; Asher SA
    Appl Spectrosc; 2014; 68(1):49-56. PubMed ID: 24405954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.
    Xie P; Chen YJ; Uddin MJ; Endicott JF
    J Phys Chem A; 2005 Jun; 109(21):4671-89. PubMed ID: 16833808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RDX geometries, excited states, and revised energy ordering of conformers via MP2 and CCSD(T) methodologies: insights into decomposition mechanism.
    Molt RW; Watson T; Lotrich VF; Bartlett RJ
    J Phys Chem A; 2011 Feb; 115(5):884-90. PubMed ID: 21210658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.
    Birke RL; Znamenskiy V; Lombardi JR
    J Chem Phys; 2010 Jun; 132(21):214707. PubMed ID: 20528041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of photo induced charge transfer mechanism of PEDOT with nitro groups of RDX, HMX and TNT explosives using anti-stokes and stokes Raman lines ratios.
    Ramachandran K; Kumari A; Nath Acharyya J; Chaudhary AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119360. PubMed ID: 33453599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: a combined experimental and theoretical analysis.
    Karabacak M; Kose E; Atac A; Ali Cipiloglu M; Kurt M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():892-908. PubMed ID: 22902933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pigment violet 19 - a test case to define a simple method to simulate the vibronic structure of absorption spectra of organic pigments and dyes in solution.
    Champagne B; Liégeois V; Zutterman F
    Photochem Photobiol Sci; 2015 Feb; 14(2):444-56. PubMed ID: 25501947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents.
    Guthmuller J; Champagne B
    J Chem Phys; 2007 Oct; 127(16):164507. PubMed ID: 17979360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR, UV, FT-IR, FT-Raman spectra and molecular structure (monomeric and dimeric structures) investigation of nicotinic acid N-oxide: A combined experimental and theoretical study.
    Atac A; Karabacak M; Karaca C; Kose E
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):145-54. PubMed ID: 22001008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory.
    Neugebauer J; Hess BA
    J Chem Phys; 2004 Jun; 120(24):11564-77. PubMed ID: 15268191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD.
    Cooper JK; Grant CD; Zhang JZ
    J Phys Chem A; 2013 Jul; 117(29):6043-51. PubMed ID: 23432018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation.
    Ricci M; Platania E; Lofrumento C; Castellucci EM; Becucci M
    J Phys Chem A; 2016 Jul; 120(27):5307-14. PubMed ID: 27139691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation.
    Mohammadpour M; Jamshidi Z
    J Chem Phys; 2016 May; 144(19):194302. PubMed ID: 27208944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study.
    Infante-Castillo R; Pacheco-Londoño L; Hernández-Rivera SP
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):137-41. PubMed ID: 20381411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous resonance Raman optical activity involving two electronic states.
    Merten C; Li H; Nafie LA
    J Phys Chem A; 2012 Jul; 116(27):7329-36. PubMed ID: 22662763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory and Raman spectroscopy applied to structure and vibrational mode analysis of 1,1',3,3'-tetraethyl-5,5',6,6'-tetrachloro- benzimidazolocarbocyanine iodide and its aggregate.
    Aydin M; Dede Ö; Akins DL
    J Chem Phys; 2011 Feb; 134(6):064325. PubMed ID: 21322698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.