BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22770906)

  • 1. Monitoring of benzene-induced hematotoxicity in mice by serial leukocyte counting using a microcavity array.
    Hosokawa M; Asami M; Yoshino T; Tsujimura N; Takahashi M; Nakasono S; Tanaka T; Matsunaga T
    Biosens Bioelectron; 2013 Feb; 40(1):110-4. PubMed ID: 22770906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukocyte counting from a small amount of whole blood using a size-controlled microcavity array.
    Hosokawa M; Asami M; Nakamura S; Yoshino T; Tsujimura N; Takahashi M; Nakasono S; Tanaka T; Matsunaga T
    Biotechnol Bioeng; 2012 Aug; 109(8):2017-24. PubMed ID: 22367741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity.
    Bauer AK; Faiola B; Abernethy DJ; Marchan R; Pluta LJ; Wong VA; Gonzalez FJ; Butterworth BE; Borghoff SJ; Everitt JI; Recio L
    Toxicol Sci; 2003 Apr; 72(2):201-9. PubMed ID: 12655032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-selective microcavity array for rapid and efficient detection of circulating tumor cells.
    Hosokawa M; Hayata T; Fukuda Y; Arakaki A; Yoshino T; Tanaka T; Matsunaga T
    Anal Chem; 2010 Aug; 82(15):6629-35. PubMed ID: 20583799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The detection of in vivo hematotoxicity of benzene by in vitro liquid bone marrow cultures.
    Harigaya K; Miller ME; Cronkite EP; Drew RT
    Toxicol Appl Pharmacol; 1981 Sep; 60(2):346-53. PubMed ID: 7281193
    [No Abstract]   [Full Text] [Related]  

  • 6. Microfluidic liquid filters for leukocyte isolation.
    SooHoo J; Walker G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6319-22. PubMed ID: 18003466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of acetylsalicylic acid on hematotoxicity of benzene.
    Kowalówka-Zawieja J; Zielińska-Psuja B; Przystanowicz J; Sommerfeld K
    Int J Occup Med Environ Health; 2013 Oct; 26(5):802-12. PubMed ID: 24249093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical application of microfluidic leukocyte enrichment protocol in mild phenotype sickle cell disease (SCD).
    White WN; Raj A; Nguyen MD; Bertolone SJ; Sethu P
    Biomed Microdevices; 2009 Apr; 11(2):477-83. PubMed ID: 19083099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTEN methylation involved in benzene-induced hematotoxicity.
    Yang J; Zuo X; Bai W; Niu P; Tian L; Gao A
    Exp Mol Pathol; 2014 Jun; 96(3):300-6. PubMed ID: 24680972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphisms in genes involved in innate immunity and susceptibility to benzene-induced hematotoxicity.
    Shen M; Zhang L; Lee KM; Vermeulen R; Hosgood HD; Li G; Yin S; Rothman N; Chanock S; Smith MT; Lan Q
    Exp Mol Med; 2011 Jun; 43(6):374-8. PubMed ID: 21540635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic aqueous two phase system for leukocyte concentration from whole blood.
    Soohoo JR; Walker GM
    Biomed Microdevices; 2009 Apr; 11(2):323-9. PubMed ID: 18937070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: implications for benzene-induced hematotoxicity.
    Zhu H; Li Y; Trush MA
    J Toxicol Environ Health; 1995 Oct; 46(2):183-201. PubMed ID: 7563217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene.
    Yi JY; Hirabayashi Y; Choi YK; Kodama Y; Kanno J; Han JH; Inoue T; Yoon BI
    Arch Toxicol; 2009 Aug; 83(8):795-803. PubMed ID: 19326098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic isolation of leukocytes from whole blood for phenotype and gene expression analysis.
    Sethu P; Moldawer LL; Mindrinos MN; Scumpia PO; Tannahill CL; Wilhelmy J; Efron PA; Brownstein BH; Tompkins RG; Toner M
    Anal Chem; 2006 Aug; 78(15):5453-61. PubMed ID: 16878882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD.
    Chavez-Pineda OG; Rodriguez-Moncayo R; Gonzalez-Suarez AM; Guevara-Pantoja PE; Maravillas-Montero JL; Garcia-Cordero JL
    Lab Chip; 2024 Apr; 24(9):2575-2589. PubMed ID: 38646820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long non-coding RNA NR_045623 and NR_028291 involved in benzene hematotoxicity in occupationally benzene-exposed workers.
    Bai W; Yang J; Yang G; Niu P; Tian L; Gao A
    Exp Mol Pathol; 2014 Jun; 96(3):354-60. PubMed ID: 24613687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping.
    Kuan DH; Wu CC; Su WY; Huang NT
    Sci Rep; 2018 Oct; 8(1):15345. PubMed ID: 30337656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.