These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 22770965)
1. Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment. Scheurer M; Michel A; Brauch HJ; Ruck W; Sacher F Water Res; 2012 Oct; 46(15):4790-802. PubMed ID: 22770965 [TBL] [Abstract][Full Text] [Related]
2. Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea. Trautwein C; Kümmerer K Chemosphere; 2011 Oct; 85(5):765-73. PubMed ID: 21752423 [TBL] [Abstract][Full Text] [Related]
3. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners. Scheurer M; Storck FR; Brauch HJ; Lange FT Water Res; 2010 Jun; 44(12):3573-84. PubMed ID: 20462625 [TBL] [Abstract][Full Text] [Related]
4. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany. Scheurer M; Sacher F; Brauch HJ J Environ Monit; 2009 Sep; 11(9):1608-13. PubMed ID: 19724829 [TBL] [Abstract][Full Text] [Related]
5. Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle. Trautwein C; Berset JD; Wolschke H; Kümmerer K Environ Int; 2014 Sep; 70():203-12. PubMed ID: 24954924 [TBL] [Abstract][Full Text] [Related]
6. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. Martín J; Buchberger W; Santos JL; Alonso E; Aparicio I J Chromatogr B Analyt Technol Biomed Life Sci; 2012 May; 895-896():94-101. PubMed ID: 22483984 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters. Kosma CI; Lambropoulou DA; Albanis TA Water Res; 2015 Mar; 70():436-48. PubMed ID: 25562582 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and fate of ozonation by-products at a full-scale drinking water treatment plant. Papageorgiou A; Voutsa D; Papadakis N Sci Total Environ; 2014 May; 481():392-400. PubMed ID: 24607632 [TBL] [Abstract][Full Text] [Related]
9. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Reungoat J; Macova M; Escher BI; Carswell S; Mueller JF; Keller J Water Res; 2010 Jan; 44(2):625-37. PubMed ID: 19863988 [TBL] [Abstract][Full Text] [Related]
10. Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles. Reemtsma T; Miehe U; Duennbier U; Jekel M Water Res; 2010 Jan; 44(2):596-604. PubMed ID: 19666184 [TBL] [Abstract][Full Text] [Related]
11. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view. Dieter HH Regul Toxicol Pharmacol; 2010 Mar; 56(2):121-5. PubMed ID: 19706317 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Huerta-Fontela M; Galceran MT; Ventura F Water Res; 2011 Jan; 45(3):1432-42. PubMed ID: 21122885 [TBL] [Abstract][Full Text] [Related]
13. Detailed sorption characteristics of the anti-diabetic drug metformin and its transformation product guanylurea in agricultural soils. Briones RM; Sarmah AK Sci Total Environ; 2018 Jul; 630():1258-1268. PubMed ID: 29554747 [TBL] [Abstract][Full Text] [Related]
14. Integrated disinfection by-products mixtures research: disinfection of drinking waters by chlorination and ozonation/postchlorination treatment scenarios. Miltner RJ; Speth TF; Richardson SD; Krasner SW; Weinberg HS; Simmons JE J Toxicol Environ Health A; 2008; 71(17):1133-48. PubMed ID: 18636388 [TBL] [Abstract][Full Text] [Related]
15. The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water. Matilainen A; Iivari P; Sallanko J; Heiska E; Tuhkanen T Environ Technol; 2006 Oct; 27(10):1171-80. PubMed ID: 17144266 [TBL] [Abstract][Full Text] [Related]
16. Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection. Zimmermann SG; Wittenwiler M; Hollender J; Krauss M; Ort C; Siegrist H; von Gunten U Water Res; 2011 Jan; 45(2):605-17. PubMed ID: 20828780 [TBL] [Abstract][Full Text] [Related]
17. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration. Macova M; Escher BI; Reungoat J; Carswell S; Chue KL; Keller J; Mueller JF Water Res; 2010 Jan; 44(2):477-92. PubMed ID: 19854465 [TBL] [Abstract][Full Text] [Related]
18. Removal of pharmaceuticals during drinking water treatment. Ternes TA; Meisenheimer M; McDowell D; Sacher F; Brauch HJ; Haist-Gulde B; Preuss G; Wilme U; Zulei-Seibert N Environ Sci Technol; 2002 Sep; 36(17):3855-63. PubMed ID: 12322761 [TBL] [Abstract][Full Text] [Related]
19. Impact of riverbank filtration on treatment of polluted river water. Singh P; Kumar P; Mehrotra I; Grischek T J Environ Manage; 2010 May; 91(5):1055-62. PubMed ID: 20089349 [TBL] [Abstract][Full Text] [Related]
20. Emerging nitrogenous disinfection byproducts: Transformation of the antidiabetic drug metformin during chlorine disinfection of water. Armbruster D; Happel O; Scheurer M; Harms K; Schmidt TC; Brauch HJ Water Res; 2015 Aug; 79():104-18. PubMed ID: 25973582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]