These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22771350)

  • 1. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant.
    Cassina L; Tassi E; Pedron F; Petruzzelli G; Ambrosini P; Barbafieri M
    J Hazard Mater; 2012 Sep; 231-232():36-42. PubMed ID: 22771350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.
    Wang J; Xia J; Feng X
    J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake.
    Wang J; Anderson CWN; Xing Y; Fan Y; Xia J; Shaheen SM; Rinklebe J; Feng X
    Environ Pollut; 2018 Nov; 242(Pt A):986-993. PubMed ID: 30373044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effectiveness and efficiency of phytoremediation of a multicontaminated industrial site: Porto Marghera (Venice Lagoon, Italy).
    Guarino C; Sciarrillo R
    Chemosphere; 2017 Sep; 183():371-379. PubMed ID: 28554021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.
    Tassi E; Pouget J; Petruzzelli G; Barbafieri M
    Chemosphere; 2008 Mar; 71(1):66-73. PubMed ID: 18037469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction.
    Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M
    Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury volatilisation and phytoextraction from base-metal mine tailings.
    Moreno FN; Anderson CW; Stewart RB; Robinson BH
    Environ Pollut; 2005 Jul; 136(2):341-52. PubMed ID: 15840542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative uptake of plutonium from soils by Brassica juncea and Helianthus annuus.
    Lee JH; Hossner LR; Attrep M; Kung KS
    Environ Pollut; 2002; 120(2):173-82. PubMed ID: 12395828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).
    Su Y; Han FX; Chen J; Sridhar BB; Monts DL
    Int J Phytoremediation; 2008; 10(6):547-60. PubMed ID: 19260232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus).
    Rahman MM; Azirun SM; Boyce AN
    PLoS One; 2013; 8(5):e62941. PubMed ID: 23667546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet.
    Firdaus-e-Bareen ; Shafiq M; Jamil S
    J Hazard Mater; 2012 Oct; 237-238():186-93. PubMed ID: 22959131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming limitation of "recalcitrant areas" to phytoextraction process: The synergistic effects of exogenous cytokinins and nitrogen treatments.
    Barbafieri M; Morelli E; Tassi E; Pedron F; Remorini D; Petruzzelli G
    Sci Total Environ; 2018 Oct; 639():1520-1529. PubMed ID: 29929315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals.
    Parra R; Ulery AL; Elless MP; Blaylock MJ
    Int J Phytoremediation; 2008; 10(5):415-29. PubMed ID: 19260223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis.
    Nehnevajova E; Herzig R; Federer G; Erismann KH; Schwitzguébel JP
    Int J Phytoremediation; 2005; 7(4):337-49. PubMed ID: 16463545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Raj D; Kumar A; Maiti SK
    Int J Phytoremediation; 2020; 22(7):733-744. PubMed ID: 31928218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury uptake and effects on growth in Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Enamorado-Montes G; Díez S
    J Environ Sci (China); 2016 Oct; 48():120-125. PubMed ID: 27745657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil--results from a greenhouse study.
    Wang J; Feng X; Anderson CW; Qiu G; Ping L; Bao Z
    J Hazard Mater; 2011 Feb; 186(1):119-27. PubMed ID: 21122988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.