BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 22771538)

  • 21. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci.
    Azzi S; Rossignol S; Steunou V; Sas T; Thibaud N; Danton F; Le Jule M; Heinrichs C; Cabrol S; Gicquel C; Le Bouc Y; Netchine I
    Hum Mol Genet; 2009 Dec; 18(24):4724-33. PubMed ID: 19755383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetics in reproductive medicine.
    Paoloni-Giacobino A
    Pediatr Res; 2007 May; 61(5 Pt 2):51R-57R. PubMed ID: 17413849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health.
    Argyraki M; Damdimopoulou P; Chatzimeletiou K; Grimbizis GF; Tarlatzis BC; Syrrou M; Lambropoulos A
    Hum Reprod Update; 2019 Nov; 25(6):777-801. PubMed ID: 31633761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human imprinting syndromes.
    Lim DH; Maher ER
    Epigenomics; 2009 Dec; 1(2):347-69. PubMed ID: 22122706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic anomalies in childhood growth disorders.
    Netchine I; Rossignol S; Azzi S; Le Bouc Y
    Nestle Nutr Inst Workshop Ser; 2013; 71():65-73. PubMed ID: 23502140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Genomic imprinting and hereditary diseases].
    Orstavik KH
    Tidsskr Nor Laegeforen; 1999 Feb; 119(6):835-8. PubMed ID: 10101947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An atypical case of hypomethylation at multiple imprinted loci.
    Baple EL; Poole RL; Mansour S; Willoughby C; Temple IK; Docherty LE; Taylor R; Mackay DJ
    Eur J Hum Genet; 2011 Mar; 19(3):360-2. PubMed ID: 21206512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assisted reproductive technology represents a possible risk factor for development of epimutation-mediated imprinting disorders for mothers aged ≥ 30 years.
    Hara-Isono K; Matsubara K; Mikami M; Arima T; Ogata T; Fukami M; Kagami M
    Clin Epigenetics; 2020 Jul; 12(1):111. PubMed ID: 32698867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Epigenetics, genomic imprinting and developmental disorders].
    Le Bouc Y; Rossignol S; Azzi S; Brioude F; Cabrol S; Gicquel C; Netchine I
    Bull Acad Natl Med; 2010 Feb; 194(2):287-97; discussion 297-300. PubMed ID: 21166119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lessons from imprinted multilocus loss of methylation in human syndromes: A step toward understanding the mechanisms underlying these complex diseases.
    Azzi S; Rossignol S; Le Bouc Y; Netchine I
    Epigenetics; 2010 Jul; 5(5):373-7. PubMed ID: 20495355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maternal control of genomic imprint maintenance.
    Denomme MM; Mann MR
    Reprod Biomed Online; 2013 Dec; 27(6):629-36. PubMed ID: 24125946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into the pathogenesis of Beckwith-Wiedemann and Silver-Russell syndromes: contribution of small copy number variations to 11p15 imprinting defects.
    Demars J; Rossignol S; Netchine I; Lee KS; Shmela M; Faivre L; Weill J; Odent S; Azzi S; Callier P; Lucas J; Dubourg C; Andrieux J; Le Bouc Y; El-Osta A; Gicquel C
    Hum Mutat; 2011 Oct; 32(10):1171-82. PubMed ID: 21780245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic imprinting and dermatological disease.
    Millington GW
    Clin Exp Dermatol; 2006 Sep; 31(5):681-8. PubMed ID: 16901310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beckwith-Wiedemann and Russell-Silver Syndromes: from new molecular insights to the comprehension of imprinting regulation.
    Azzi S; Abi Habib W; Netchine I
    Curr Opin Endocrinol Diabetes Obes; 2014 Feb; 21(1):30-8. PubMed ID: 24322424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology.
    Lucifero D; Chaillet JR; Trasler JM
    Hum Reprod Update; 2004; 10(1):3-18. PubMed ID: 15005460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family.
    Cardarelli L; Sparago A; De Crescenzo A; Nalesso E; Zavan B; Cubellis MV; Selicorni A; Cavicchioli P; Pozzan GB; Petrella M; Riccio A
    Pediatr Dev Pathol; 2010; 13(4):326-30. PubMed ID: 20028213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.
    Rossignol S; Steunou V; Chalas C; Kerjean A; Rigolet M; Viegas-Pequignot E; Jouannet P; Le Bouc Y; Gicquel C
    J Med Genet; 2006 Dec; 43(12):902-7. PubMed ID: 16825435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Need for a precise molecular diagnosis in Beckwith-Wiedemann and Silver-Russell syndrome: what has to be considered and why it is important.
    Eggermann T; Brück J; Knopp C; Fekete G; Kratz C; Tasic V; Kurth I; Elbracht M; Eggermann K; Begemann M
    J Mol Med (Berl); 2020 Oct; 98(10):1447-1455. PubMed ID: 32839827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi.
    Paganini L; Carlessi N; Fontana L; Silipigni R; Motta S; Fiori S; Guerneri S; Lalatta F; Cereda A; Sirchia S; Miozzo M; Tabano S
    Epigenetics; 2015; 10(7):643-9. PubMed ID: 26061650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parental imprinting and human disease.
    Lalande M
    Annu Rev Genet; 1996; 30():173-95. PubMed ID: 8982453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.