These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22771574)

  • 1. Experimental definition of a clustered regularly interspaced short palindromic duplicon in Escherichia coli.
    Goren MG; Yosef I; Auster O; Qimron U
    J Mol Biol; 2012 Oct; 423(1):14-6. PubMed ID: 22771574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.
    Al-Attar S; Westra ER; van der Oost J; Brouns SJ
    Biol Chem; 2011 Apr; 392(4):277-89. PubMed ID: 21294681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].
    Zhang F; Zhang B; Xiang H; Hu S
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1445-53. PubMed ID: 20112671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to identify CRISPRs in sequencing data.
    Drevet C; Pourcel C
    Methods Mol Biol; 2012; 905():15-27. PubMed ID: 22735995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS.
    Pul U; Wurm R; Arslan Z; Geissen R; Hofmann N; Wagner R
    Mol Microbiol; 2010 Mar; 75(6):1495-512. PubMed ID: 20132443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli.
    Almendros C; Guzmán NM; Díez-Villaseñor C; García-Martínez J; Mojica FJ
    PLoS One; 2012; 7(11):e50797. PubMed ID: 23189210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomic structures of Mycobacterium CRISPR-Cas.
    He L; Fan X; Xie J
    J Cell Biochem; 2012 Jul; 113(7):2464-73. PubMed ID: 22396173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR adaptation in Escherichia coli subtypeI-E system.
    Kiro R; Goren MG; Yosef I; Qimron U
    Biochem Soc Trans; 2013 Dec; 41(6):1412-5. PubMed ID: 24256229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.
    Semenova E; Jore MM; Datsenko KA; Semenova A; Westra ER; Wanner B; van der Oost J; Brouns SJ; Severinov K
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10098-103. PubMed ID: 21646539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-based adaptive and heritable immunity in prokaryotes.
    van der Oost J; Jore MM; Westra ER; Lundgren M; Brouns SJ
    Trends Biochem Sci; 2009 Aug; 34(8):401-7. PubMed ID: 19646880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bacterial CRISPR/Cas system as analog of the mammalian adaptive immune system.
    Goren M; Yosef I; Edgar R; Qimron U
    RNA Biol; 2012 May; 9(5):549-54. PubMed ID: 22614830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-based immune systems of the Sulfolobales: complexity and diversity.
    Garrett RA; Shah SA; Vestergaard G; Deng L; Gudbergsdottir S; Kenchappa CS; Erdmann S; She Q
    Biochem Soc Trans; 2011 Jan; 39(1):51-7. PubMed ID: 21265746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens.
    Grissa I; Vergnaud G; Pourcel C
    Methods Mol Biol; 2009; 551():105-16. PubMed ID: 19521870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in clustered regularly interspaced short palindromic repeats--a review].
    Wang L; He J; Wang J
    Wei Sheng Wu Xue Bao; 2011 Aug; 51(8):1007-13. PubMed ID: 22097765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats).
    He J; Deem MW
    Phys Rev Lett; 2010 Sep; 105(12):128102. PubMed ID: 20867676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli.
    Yosef I; Goren MG; Qimron U
    Nucleic Acids Res; 2012 Jul; 40(12):5569-76. PubMed ID: 22402487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of CRISPR loci in lactic acid bacteria genomes.
    Horvath P; Coûté-Monvoisin AC; Romero DA; Boyaval P; Fremaux C; Barrangou R
    Int J Food Microbiol; 2009 Apr; 131(1):62-70. PubMed ID: 18635282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.
    Yosef I; Goren MG; Kiro R; Edgar R; Qimron U
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):20136-41. PubMed ID: 22114197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of CRISPR loci in Escherichia coli.
    Díez-Villaseñor C; Almendros C; García-Martínez J; Mojica FJ
    Microbiology (Reading); 2010 May; 156(Pt 5):1351-61. PubMed ID: 20133361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archaeal CRISPR-based immune systems: exchangeable functional modules.
    Garrett RA; Vestergaard G; Shah SA
    Trends Microbiol; 2011 Nov; 19(11):549-56. PubMed ID: 21945420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.