BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22771578)

  • 1. Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2012 Sep; 369(2):377-85. PubMed ID: 22771578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2013 Oct; 382(1):268-79. PubMed ID: 23933172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.
    Coffman JA; Coluccio A; Planchart A; Robertson AJ
    Dev Biol; 2009 Jun; 330(1):123-30. PubMed ID: 19328778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
    Ben-Tabou de-Leon S; Su YH; Lin KT; Li E; Davidson EH
    Dev Biol; 2013 Feb; 374(1):245-54. PubMed ID: 23211652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
    Materna SC; Ransick A; Li E; Davidson EH
    Dev Biol; 2013 Mar; 375(1):92-104. PubMed ID: 23261933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH; Luo YJ; Su YH
    Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
    Wei Z; Yaguchi J; Yaguchi S; Angerer RC; Angerer LM
    Development; 2009 Apr; 136(7):1179-89. PubMed ID: 19270175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.
    Li E; Cui M; Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E906-13. PubMed ID: 24556994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity.
    Coffman JA; Wessels A; DeSchiffart C; Rydlizky K
    Dev Biol; 2014 Feb; 386(2):302-7. PubMed ID: 24384388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling.
    Wei Z; Range R; Angerer R; Angerer L
    Development; 2012 May; 139(9):1662-9. PubMed ID: 22438568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.
    Saudemont A; Haillot E; Mekpoh F; Bessodes N; Quirin M; Lapraz F; Duboc V; Röttinger E; Range R; Oisel A; Besnardeau L; Wincker P; Lepage T
    PLoS Genet; 2010 Dec; 6(12):e1001259. PubMed ID: 21203442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo.
    Su YH; Li E; Geiss GK; Longabaugh WJ; Krämer A; Davidson EH
    Dev Biol; 2009 May; 329(2):410-21. PubMed ID: 19268450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.