These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 22771776)

  • 21. Age-Dependent Subchondral Bone Remodeling and Cartilage Repair in a Minipig Defect Model.
    Pfeifer CG; Fisher MB; Saxena V; Kim M; Henning EA; Steinberg DA; Dodge GR; Mauck RL
    Tissue Eng Part C Methods; 2017 Nov; 23(11):745-753. PubMed ID: 28747146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High resolution MRI imaging at 9.4 Tesla of the osteochondral unit in a translational model of articular cartilage repair.
    Goebel L; Müller A; Bücker A; Madry H
    BMC Musculoskelet Disord; 2015 Apr; 16():91. PubMed ID: 25888208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis.
    Hwang J; Bae WC; Shieu W; Lewis CW; Bugbee WD; Sah RL
    Arthritis Rheum; 2008 Dec; 58(12):3831-42. PubMed ID: 19035476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.
    Hoemann CD; Sun J; McKee MD; Chevrier A; Rossomacha E; Rivard GE; Hurtig M; Buschmann MD
    Osteoarthritis Cartilage; 2007 Jan; 15(1):78-89. PubMed ID: 16895758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. rAAV-Mediated
    Lange C; Madry H; Venkatesan JK; Schmitt G; Speicher-Mentges S; Zurakowski D; Menger MD; Laschke MW; Cucchiarini M
    Am J Sports Med; 2021 Nov; 49(13):3696-3707. PubMed ID: 34643471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing.
    Schlichting K; Schell H; Kleemann RU; Schill A; Weiler A; Duda GN; Epari DR
    Am J Sports Med; 2008 Dec; 36(12):2379-91. PubMed ID: 18952905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: mechanical and histological evaluations from 6-48 weeks.
    Messner K
    J Biomed Mater Res; 1993 Dec; 27(12):1527-32. PubMed ID: 8113240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subchondral Drilling Independent of Drill Hole Number Improves Articular Cartilage Repair and Reduces Subchondral Bone Alterations Compared With Debridement in Adult Sheep.
    Stachel N; Orth P; Zurakowski D; Menger MD; Laschke MW; Cucchiarini M; Madry H
    Am J Sports Med; 2022 Aug; 50(10):2669-2679. PubMed ID: 35834876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2.
    Taniyama T; Masaoka T; Yamada T; Wei X; Yasuda H; Yoshii T; Kozaka Y; Takayama T; Hirano M; Okawa A; Sotome S
    Artif Organs; 2015 Jun; 39(6):529-35. PubMed ID: 25865039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of marrow stromal cells derived chondrocytes on repair of full-thickness defects of rabbit articular cartilage].
    Wang WM; Hu YY
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jan; 18(1):58-62. PubMed ID: 14768092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.
    Higa K; Kitamura N; Goto K; Kurokawa T; Gong JP; Kanaya F; Yasuda K
    BMC Musculoskelet Disord; 2017 May; 18(1):210. PubMed ID: 28532476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The temporal sequence of spontaneous repair of osteochondral defects in the knees of rabbits is dependent on the geometry of the defect.
    Lietman SA; Miyamoto S; Brown PR; Inoue N; Reddi AH
    J Bone Joint Surg Br; 2002 May; 84(4):600-6. PubMed ID: 12043787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits.
    Mrosek EH; Schagemann JC; Chung HW; Fitzsimmons JS; Yaszemski MJ; Mardones RM; O'Driscoll SW; Reinholz GG
    J Orthop Res; 2010 Feb; 28(2):141-8. PubMed ID: 19743507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits.
    Kim HK; Moran ME; Salter RB
    J Bone Joint Surg Am; 1991 Oct; 73(9):1301-15. PubMed ID: 1918112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.
    Marchand C; Chen G; Tran-Khanh N; Sun J; Chen H; Buschmann MD; Hoemann CD
    Tissue Eng Part A; 2012 Mar; 18(5-6):508-19. PubMed ID: 21942869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histological Evaluation of Early-Phase Changes in the Osteochondral Unit After Microfracture in a Full-Thickness Cartilage Defect Rat Model.
    Hayashi S; Nakasa T; Ishikawa M; Nakamae A; Miyaki S; Adachi N
    Am J Sports Med; 2018 Oct; 46(12):3032-3039. PubMed ID: 30067073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2D and 3D MOCART scoring systems assessed by 9.4 T high-field MRI correlate with elementary and complex histological scoring systems in a translational model of osteochondral repair.
    Goebel L; Zurakowski D; Müller A; Pape D; Cucchiarini M; Madry H
    Osteoarthritis Cartilage; 2014 Oct; 22(10):1386-95. PubMed ID: 25278050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.