BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22771793)

  • 1. TAA repeat variation in the GRIK2 gene does not influence age at onset in Huntington's disease.
    Lee JH; Lee JM; Ramos EM; Gillis T; Mysore JS; Kishikawa S; Hadzi T; Hendricks AE; Hayden MR; Morrison PJ; Nance M; Ross CA; Margolis RL; Squitieri F; Gellera C; Gomez-Tortosa E; Ayuso C; Suchowersky O; Trent RJ; McCusker E; Novelletto A; Frontali M; Jones R; Ashizawa T; Frank S; Saint-Hilaire MH; Hersch SM; Rosas HD; Lucente D; Harrison MB; Zanko A; Abramson RK; Marder K; Sequeiros J; Landwehrmeyer GB; ; Shoulson I; ; Myers RH; MacDonald ME; Gusella JF
    Biochem Biophys Res Commun; 2012 Aug; 424(3):404-8. PubMed ID: 22771793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of the GRIK2 modifier effect in Huntington's disease.
    Zeng W; Gillis T; Hakky M; Djoussé L; Myers RH; MacDonald ME; Gusella JF
    BMC Neurosci; 2006 Sep; 7():62. PubMed ID: 16959037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds.
    Andresen JM; Gayán J; Cherny SS; Brocklebank D; Alkorta-Aranburu G; Addis EA; ; Cardon LR; Housman DE; Wexler NS
    J Med Genet; 2007 Jan; 44(1):44-50. PubMed ID: 17018562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the GluR6 gene associated with younger onset age of Huntington's disease.
    MacDonald ME; Vonsattel JP; Shrinidhi J; Couropmitree NN; Cupples LA; Bird ED; Gusella JF; Myers RH
    Neurology; 1999 Oct; 53(6):1330-2. PubMed ID: 10522893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of candidate genes modifying the age-at-onset in Huntington's disease.
    Metzger S; Bauer P; Tomiuk J; Laccone F; Didonato S; Gellera C; Mariotti C; Lange HW; Weirich-Schwaiger H; Wenning GK; Seppi K; Melegh B; Havasi V; Balikó L; Wieczorek S; Zaremba J; Hoffman-Zacharska D; Sulek A; Basak AN; Soydan E; Zidovska J; Kebrdlova V; Pandolfo M; Ribaï P; Kadasi L; Kvasnicova M; Weber BH; Kreuz F; Dose M; Stuhrmann M; Riess O
    Hum Genet; 2006 Sep; 120(2):285-92. PubMed ID: 16847693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of age at onset in Huntington's disease and spinocerebellar ataxia type 2 patients originated from eastern India.
    Chattopadhyay B; Ghosh S; Gangopadhyay PK; Das SK; Roy T; Sinha KK; Jha DK; Mukherjee SC; Chakraborty A; Singhal BS; Bhattacharya AK; Bhattacharyya NP
    Neurosci Lett; 2003 Jul; 345(2):93-6. PubMed ID: 12821179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic polymorphisms adjacent to the CAG repeat influence clinical features at onset in Huntington's disease.
    Vuillaume I; Vermersch P; Destée A; Petit H; Sablonnière B
    J Neurol Neurosurg Psychiatry; 1998 Jun; 64(6):758-62. PubMed ID: 9647305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and clinical manifestations of juvenile Huntington's disease: a retrospective analysis.
    Fusilli C; Migliore S; Mazza T; Consoli F; De Luca A; Barbagallo G; Ciammola A; Gatto EM; Cesarini M; Etcheverry JL; Parisi V; Al-Oraimi M; Al-Harrasi S; Al-Salmi Q; Marano M; Vonsattel JG; Sabatini U; Landwehrmeyer GB; Squitieri F
    Lancet Neurol; 2018 Nov; 17(11):986-993. PubMed ID: 30243861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of the miniature pig Huntington's disease gene homolog: evidence for conservation and polymorphism in the CAG triplet repeat.
    Matsuyama N; Hadano S; Onoe K; Osuga H; Showguchi-Miyata J; Gondo Y; Ikeda JE
    Genomics; 2000 Oct; 69(1):72-85. PubMed ID: 11013077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age, CAG repeat length, and clinical progression in Huntington's disease.
    Rosenblatt A; Kumar BV; Mo A; Welsh CS; Margolis RL; Ross CA
    Mov Disord; 2012 Feb; 27(2):272-6. PubMed ID: 22173986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant effects of the Huntington's disease HTT CAG repeat length are captured in gene-expression data sets by a continuous analysis mathematical modeling strategy.
    Lee JM; Galkina EI; Levantovsky RM; Fossale E; Anne Anderson M; Gillis T; Srinidhi Mysore J; Coser KR; Shioda T; Zhang B; Furia MD; Derry J; Kohane IS; Seong IS; Wheeler VC; Gusella JF; MacDonald ME
    Hum Mol Genet; 2013 Aug; 22(16):3227-38. PubMed ID: 23595883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropathological diagnosis and CAG repeat expansion in Huntington's disease.
    Xuereb JH; MacMillan JC; Snell R; Davies P; Harper PS
    J Neurol Neurosurg Psychiatry; 1996 Jan; 60(1):78-81. PubMed ID: 8558157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Genetic Factors Involved in Huntington Disease Age of Onset: E2F2 as a New Potential Modifier Gene.
    Valcárcel-Ocete L; Alkorta-Aranburu G; Iriondo M; Fullaondo A; García-Barcina M; Fernández-García JM; Lezcano-García E; Losada-Domingo JM; Ruiz-Ojeda J; Álvarez de Arcaya A; Pérez-Ramos JM; Roos RA; Nielsen JE; Saft C; ; Zubiaga AM; Aguirre A
    PLoS One; 2015; 10(7):e0131573. PubMed ID: 26148071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study of Triplet-Primed PCR for Identification of CAG Repeat Expansion in the HTT Gene in a Cohort of 503 Indian Cases with Huntington's Disease Symptoms.
    Chheda P; Chanekar M; Salunkhe Y; Dama T; Pais A; Pande S; Bendre R; Shah N
    Mol Diagn Ther; 2018 Jun; 22(3):353-359. PubMed ID: 29619771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modifier of Huntington's disease onset at the MLH1 locus.
    Lee JM; Chao MJ; Harold D; Abu Elneel K; Gillis T; Holmans P; Jones L; Orth M; Myers RH; Kwak S; Wheeler VC; MacDonald ME; Gusella JF
    Hum Mol Genet; 2017 Oct; 26(19):3859-3867. PubMed ID: 28934397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haplotype analysis of the CAG and CCG repeats in 21 Brazilian families with Huntington's disease.
    Agostinho Lde A; Rocha CF; Medina-Acosta E; Barboza HN; da Silva AF; Pereira SP; da Silva Idos S; Paradela ER; Figueiredo AL; Nogueira Ede M; Alvarenga RM; Hernan Cabello P; dos Santos SR; Paiva CL
    J Hum Genet; 2012 Dec; 57(12):796-803. PubMed ID: 23051704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Apolipoprotein E Genotypes on Huntington's Disease Phenotypes in a Han Chinese Population.
    Li XY; Zhang YB; Xu M; Cheng HR; Dong Y; Ni W; Li HL; Wu ZY
    Neurosci Bull; 2019 Aug; 35(4):756-762. PubMed ID: 30887245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyltetrahydrofolate reductase polymorphism influences onset of Huntington's disease.
    Brune N; Andrich J; Gencik M; Saft C; Müller T; Valentin S; Przuntek H; Epplen JT
    J Neural Transm Suppl; 2004; (68):105-10. PubMed ID: 15354395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hOGG1 Ser326Cys polymorphism and Huntington's disease.
    Coppedè F; Migheli F; Ceravolo R; Bregant E; Rocchi A; Petrozzi L; Unti E; Lonigro R; Siciliano G; Migliore L
    Toxicology; 2010 Dec; 278(2):199-203. PubMed ID: 19857538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.