BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22772019)

  • 1. Friction force measurement during cochlear implant insertion: application to a force-controlled insertion tool design.
    Miroir M; Nguyen Y; Kazmitcheff G; Ferrary E; Sterkers O; Grayeli AB
    Otol Neurotol; 2012 Aug; 33(6):1092-100. PubMed ID: 22772019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear implant insertion forces in microdissected human cochlea to evaluate a prototype array.
    Nguyen Y; Miroir M; Kazmitcheff G; Sutter J; Bensidhoum M; Ferrary E; Sterkers O; Bozorg Grayeli A
    Audiol Neurootol; 2012; 17(5):290-8. PubMed ID: 22653365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the insertion speed of cochlear implant electrodes on the insertion forces.
    Kontorinis G; Lenarz T; Stöver T; Paasche G
    Otol Neurotol; 2011 Jun; 32(4):565-70. PubMed ID: 21478788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of different lubricants on cochlear implant electrode insertion forces.
    Kontorinis G; Paasche G; Lenarz T; Stöver T
    Otol Neurotol; 2011 Sep; 32(7):1050-6. PubMed ID: 21512420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atraumaticity study of 2 cochlear implant electrode arrays.
    Manrique M; Picciafuoco S; Manrique R; Sanhueza I; Domínguez P; Pérez N; Zubieta JL; de Abajo J
    Otol Neurotol; 2014 Apr; 35(4):619-28. PubMed ID: 24569795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of embedded dexamethasone in cochlear implant array on insertion forces in an artificial model of scala tympani.
    Nguyen Y; Bernardeschi D; Kazmitcheff G; Miroir M; Vauchel T; Ferrary E; Sterkers O
    Otol Neurotol; 2015 Feb; 36(2):354-8. PubMed ID: 25098590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro modifications of the scala tympani environment and the cochlear implant array surface.
    Kontorinis G; Scheper V; Wissel K; Stöver T; Lenarz T; Paasche G
    Laryngoscope; 2012 Sep; 122(9):2057-63. PubMed ID: 22648595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an electrode prototype for atraumatic cochlear implantation in hearing preservation candidates: preliminary results from a temporal bone study.
    Helbig S; Settevendemie C; Mack M; Baumann U; Helbig M; Stöver T
    Otol Neurotol; 2011 Apr; 32(3):419-23. PubMed ID: 21307807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coated electrode carrier for cochlear implantation reduces insertion forces.
    Radeloff A; Unkelbach MH; Mack MG; Settevendemie C; Helbig S; Mueller J; Hagen R; Mlynski R
    Laryngoscope; 2009 May; 119(5):959-63. PubMed ID: 19358253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The internal dimensions of the cochlear scalae with special reference to cochlear electrode insertion trauma.
    Biedron S; Prescher A; Ilgner J; Westhofen M
    Otol Neurotol; 2010 Jul; 31(5):731-7. PubMed ID: 20142798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force application during cochlear implant insertion: an analysis for improvement of surgeon technique.
    Todd CA; Naghdy F; Svehla MJ
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1247-55. PubMed ID: 17605356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variance of angular insertion depths in free-fitting and perimodiolar cochlear implant electrodes.
    Radeloff A; Mack M; Baghi M; Gstoettner WK; Adunka OF
    Otol Neurotol; 2008 Feb; 29(2):131-6. PubMed ID: 18090204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion.
    Gwon TM; Min KS; Kim JH; Oh SH; Lee HS; Park MH; Kim SJ
    Biomed Microdevices; 2015 Apr; 17(2):32. PubMed ID: 25681972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique.
    Roland JT
    Laryngoscope; 2005 Aug; 115(8):1325-39. PubMed ID: 16094101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal bone investigations on landmarks for conventional or endosteal insertion of cochlear electrodes.
    Pau HW; Just T; Dommerich S; Behrend D
    Acta Otolaryngol; 2007 Sep; 127(9):920-6. PubMed ID: 17712669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining perimodiolar electrode placement and atraumatic insertion properties in cochlear implantation -- fact or fantasy?
    Adunka OF; Pillsbury HC; Kiefer J
    Acta Otolaryngol; 2006 May; 126(5):475-82. PubMed ID: 16698696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated insertion of preformed cochlear implant electrodes: evaluation of curling behaviour and insertion forces on an artificial cochlear model.
    Rau TS; Hussong A; Leinung M; Lenarz T; Majdani O
    Int J Comput Assist Radiol Surg; 2010 Mar; 5(2):173-81. PubMed ID: 20033522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of ultra-low insertion speeds in an inelastic artificial cochlear model using custom-made cochlear implant electrodes.
    Hügl S; Rülander K; Lenarz T; Majdani O; Rau TS
    Eur Arch Otorhinolaryngol; 2018 Dec; 275(12):2947-2956. PubMed ID: 30302574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Damage to inner ear structure during cochlear implantation: Correlation between insertion force and radio-histological findings in temporal bone specimens.
    De Seta D; Torres R; Russo FY; Ferrary E; Kazmitcheff G; Heymann D; Amiaud J; Sterkers O; Bernardeschi D; Nguyen Y
    Hear Res; 2017 Feb; 344():90-97. PubMed ID: 27825860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical cochlear implant: evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones.
    Balster S; Wenzel GI; Warnecke A; Steffens M; Rettenmaier A; Zhang K; Lenarz T; Reuter G
    Biomed Tech (Berl); 2014 Feb; 59(1):19-28. PubMed ID: 24197764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.