These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22772079)
1. Principles of direct (mediator free) bioelectrocatalysis. Karyakin AA Bioelectrochemistry; 2012 Dec; 88():70-5. PubMed ID: 22772079 [TBL] [Abstract][Full Text] [Related]
2. Direct bioelectrocatalysis by redox enzymes immobilized in electrostatically condensed oppositely charged polyelectrolyte electrode coatings. Lim K; Sima M; Stewart RJ; Minteer SD Analyst; 2020 Feb; 145(4):1250-1257. PubMed ID: 31854387 [TBL] [Abstract][Full Text] [Related]
3. Protein electrodes with direct electrochemical communication. Wollenberger U; Spricigo R; Leimkühler S; Schröder K Adv Biochem Eng Biotechnol; 2008; 109():19-64. PubMed ID: 17928972 [TBL] [Abstract][Full Text] [Related]
4. 3D-electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase. Sarauli D; Peters K; Xu C; Schulz B; Fattakhova-Rohlfing D; Lisdat F ACS Appl Mater Interfaces; 2014 Oct; 6(20):17887-93. PubMed ID: 25230089 [TBL] [Abstract][Full Text] [Related]
5. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis. Tkac J; Svitel J; Vostiar I; Navratil M; Gemeiner P Bioelectrochemistry; 2009 Sep; 76(1-2):53-62. PubMed ID: 19329366 [TBL] [Abstract][Full Text] [Related]
6. Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry. Ran Q; Peng R; Liang C; Ye S; Xian Y; Zhang W; Jin L Anal Chim Acta; 2011 Jul; 697(1-2):27-31. PubMed ID: 21641415 [TBL] [Abstract][Full Text] [Related]
7. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Tsujimura S Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. Su Y; Xie Q; Chen C; Zhang Q; Ma M; Yao S Biotechnol Prog; 2008; 24(1):262-72. PubMed ID: 18062696 [TBL] [Abstract][Full Text] [Related]
9. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Lee YS; Lim K; Minteer SD Annu Rev Phys Chem; 2021 Apr; 72():467-488. PubMed ID: 33503384 [TBL] [Abstract][Full Text] [Related]
10. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD Lim K; Lee YS; Simoska O; Dong F; Sima M; Stewart RJ; Minteer SD ACS Appl Mater Interfaces; 2021 Mar; 13(9):10942-10951. PubMed ID: 33646753 [TBL] [Abstract][Full Text] [Related]
11. Bioelectrocatalysis: the electrochemical kinetics of hydrogenase action. Varfolomeyev SD; Yaropolov AI; Karyakin AA J Biotechnol; 1993 Feb; 27(3):331-9. PubMed ID: 7763470 [TBL] [Abstract][Full Text] [Related]
12. Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications. Ludwig R; Harreither W; Tasca F; Gorton L Chemphyschem; 2010 Sep; 11(13):2674-97. PubMed ID: 20661990 [TBL] [Abstract][Full Text] [Related]
13. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277 [TBL] [Abstract][Full Text] [Related]
14. Fundamental insight into redox enzyme-based bioelectrocatalysis. Kano K Biosci Biotechnol Biochem; 2022 Jan; 86(2):141-156. PubMed ID: 34755834 [TBL] [Abstract][Full Text] [Related]
15. Factors affecting the interaction between carbon nanotubes and redox enzymes in direct electron transfer-type bioelectrocatalysis. Xia HQ; Kitazumi Y; Shirai O; Ozawa H; Onizuka M; Komukai T; Kano K Bioelectrochemistry; 2017 Dec; 118():70-74. PubMed ID: 28732287 [TBL] [Abstract][Full Text] [Related]
16. Nanostructured Porous Electrodes by the Anodization of Gold for an Application as Scaffolds in Direct-electron-transfer-type Bioelectrocatalysis. Sakai K; Kitazumi Y; Shirai O; Kano K Anal Sci; 2018 Nov; 34(11):1317-1322. PubMed ID: 30101833 [TBL] [Abstract][Full Text] [Related]
17. Electrical contacting of an assembly of pseudoazurin and nitrite reductase using DNA-directed immobilization. Tepper AW J Am Chem Soc; 2010 May; 132(18):6550-7. PubMed ID: 20397667 [TBL] [Abstract][Full Text] [Related]
18. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Vaz-Dominguez C; Campuzano S; Rüdiger O; Pita M; Gorbacheva M; Shleev S; Fernandez VM; De Lacey AL Biosens Bioelectron; 2008 Dec; 24(4):531-7. PubMed ID: 18585029 [TBL] [Abstract][Full Text] [Related]
19. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Schachinger F; Chang H; Scheiblbrandner S; Ludwig R Molecules; 2021 Jul; 26(15):. PubMed ID: 34361678 [TBL] [Abstract][Full Text] [Related]
20. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. Gutiérrez-Sánchez C; Olea D; Marques M; Fernández VM; Pereira IA; Vélez M; De Lacey AL Langmuir; 2011 May; 27(10):6449-57. PubMed ID: 21491850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]