These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22772109)

  • 21. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties.
    Xiong J; Das SN; Shin B; Kar JP; Choi JH; Myoung JM
    J Colloid Interface Sci; 2010 Oct; 350(1):344-7. PubMed ID: 20637472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired parabola subwavelength structures for improved broadband antireflection.
    Song YM; Jang SJ; Yu JS; Lee YT
    Small; 2010 May; 6(9):984-7. PubMed ID: 20461734
    [No Abstract]   [Full Text] [Related]  

  • 23. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvements of optical tactile sensors for robotic system by gold nanocomposite material.
    Massaro A; Spano F; Cazzato P; Cingolani R; Athanassiou A
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4878-82. PubMed ID: 22905545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoporous gold plasmonic structures for sensing applications.
    Ruffato G; Romanato F; Garoli D; Cattarin S
    Opt Express; 2011 Jul; 19(14):13164-70. PubMed ID: 21747470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable lenses using transparent dielectric elastomer actuators.
    Shian S; Diebold RM; Clarke DR
    Opt Express; 2013 Apr; 21(7):8669-76. PubMed ID: 23571956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antireflective structures on highly flexible and large area elastomer membrane for tunable liquid-filled endoscopic lens.
    Bae SI; Lee Y; Seo YH; Jeong KH
    Nanoscale; 2019 Jan; 11(3):856-861. PubMed ID: 30608502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers.
    Päivänranta B; Sahoo PK; Tocce E; Auzelyte V; Ekinci Y; Solak HH; Liu CC; Stuen KO; Nealey PF; David C
    ACS Nano; 2011 Mar; 5(3):1860-4. PubMed ID: 21323325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly ordered nanostructured surfaces obtained with silica-filled diblock-copolymer micelles as templates.
    Frömsdorf A; Kornowski A; Pütter S; Stillrich H; Lee LT
    Small; 2007 May; 3(5):880-9. PubMed ID: 17410621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
    Mehfuz R; Chowdhury FA; Chau KJ
    Opt Express; 2012 May; 20(10):10526-37. PubMed ID: 22565678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces.
    Sanghera J; Florea C; Busse L; Shaw B; Miklos F; Aggarwal I
    Opt Express; 2010 Dec; 18(25):26760-8. PubMed ID: 21165026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-antireflective synthetic brochosomes.
    Yang S; Sun N; Stogin BB; Wang J; Huang Y; Wong TS
    Nat Commun; 2017 Nov; 8(1):1285. PubMed ID: 29101358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface wave sensors based on nanometric layers of strongly absorbing materials.
    Zhang Y; Arnold C; Offermans P; Gómez Rivas J
    Opt Express; 2012 Apr; 20(9):9431-41. PubMed ID: 22535033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glass etching to bridge micro- and nanofluidics.
    Xu BY; Yan XN; Zhang JD; Xu JJ; Chen HY
    Lab Chip; 2012 Jan; 12(2):381-6. PubMed ID: 22068964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
    Ghaffari A; Hosseini A; Xu X; Kwong D; Subbaraman H; Chen RT
    Opt Express; 2010 Sep; 18(19):20086-95. PubMed ID: 20940898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antireflective glass nanoholes on optical lenses.
    Lee Y; Bae SI; Eom J; Suh HC; Jeong KH
    Opt Express; 2018 May; 26(11):14786-14791. PubMed ID: 29877414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Method of glass selection for color correction in optical system design.
    de Albuquerque BF; Sasian J; de Sousa FL; Montes AS
    Opt Express; 2012 Jun; 20(13):13592-611. PubMed ID: 22714425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile and efficient control of bioadhesion on poly(dimethylsiloxane) by using a biomimetic approach.
    Mussard W; Kebir N; Kriegel I; Estève M; Semetey V
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10871-4. PubMed ID: 21948488
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.