BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 22772110)

  • 1. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-assisted single-beam optothermal manipulation of microparticles.
    Liu Y; Poon AW
    Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic sorting with blinking optical traps.
    Dasgupta R; Verma RS; Gupta PK
    Opt Lett; 2012 May; 37(10):1739-41. PubMed ID: 22627555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cytometry with a light touch: sorting microscopic matter with an optical lattice.
    MacDonald MP; Neale S; Paterson L; Richies A; Dholakia K; Spalding GC
    J Biol Regul Homeost Agents; 2004; 18(2):200-5. PubMed ID: 15471228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double nanohole optical trapping: dynamics and protein-antibody co-trapping.
    Zehtabi-Oskuie A; Jiang H; Cyr BR; Rennehan DW; Al-Balushi AA; Gordon R
    Lab Chip; 2013 Jul; 13(13):2563-8. PubMed ID: 23429640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical deflection and sorting of microparticles in a near-field optical geometry.
    Marchington RF; Mazilu M; Kuriakose S; Garcés-Chávez V; Reece PJ; Krauss TF; Gu M; Dholakia K
    Opt Express; 2008 Mar; 16(6):3712-26. PubMed ID: 18542466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.
    Lei T; Poon AW
    Opt Express; 2013 Jan; 21(2):1520-30. PubMed ID: 23389134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement by optical force of separation in pinched flow fractionation.
    Lee KH; Kim SB; Lee KS; Sung HJ
    Lab Chip; 2011 Jan; 11(2):354-7. PubMed ID: 20957274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured light spots projected by a Dammann grating with high power efficiency and uniformity for optical sorting.
    Sun X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2010 Oct; 49(28):5437-43. PubMed ID: 20885481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle separation in fluidic flow by optical fiber.
    Lei H; Zhang Y; Li B
    Opt Express; 2012 Jan; 20(2):1292-300. PubMed ID: 22274474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v).
    Nho HW; Yoon TH
    Lab Chip; 2013 Mar; 13(5):773-6. PubMed ID: 23340906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous separation of colloidal particles using dielectrophoresis.
    Yunus NA; Nili H; Green NG
    Electrophoresis; 2013 Apr; 34(7):969-78. PubMed ID: 23436439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.