These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 22772202)

  • 21. Large-effective-area uncoupled few-mode multi-core fiber.
    Sasaki Y; Takenaga K; Guan N; Matsuo S; Saitoh K; Koshiba M
    Opt Express; 2012 Dec; 20(26):B77-84. PubMed ID: 23262916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis and characterization of Er-Yb codoped-depressed inner cladding fiber.
    Lin Z; Ren G; Zheng S; Jian W; Zheng J; Jian S
    Appl Opt; 2013 Aug; 52(23):5856-61. PubMed ID: 23938442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region.
    Tsuchida Y; Saitoh K; Koshiba M
    Opt Express; 2007 Feb; 15(4):1794-803. PubMed ID: 19532417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust single-mode all-solid multi-trench fiber with large effective mode area.
    Jain D; Jung Y; Kim J; Sahu JK
    Opt Lett; 2014 Sep; 39(17):5200-3. PubMed ID: 25166109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference.
    Geng Y; Li X; Tan X; Deng Y; Yu Y
    Appl Opt; 2011 Feb; 50(4):468-72. PubMed ID: 21283237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths.
    Petersen SR; Alkeskjold TT; Poli F; Coscelli E; Jørgensen MM; Laurila M; Lægsgaard J; Broeng J
    Opt Express; 2012 Mar; 20(6):6010-20. PubMed ID: 22418478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-mode optical fiber for high-power, low-loss UV transmission.
    Colombe Y; Slichter DH; Wilson AC; Leibfried D; Wineland DJ
    Opt Express; 2014 Aug; 22(16):19783-93. PubMed ID: 25321060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm.
    Bouwmans G; Bigot L; Quiquempois Y; Lopez F; Provino L; Douay M
    Opt Express; 2005 Oct; 13(21):8452-9. PubMed ID: 19498875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-loss all-solid photonic bandgap fiber.
    Ren G; Shum P; Zhang L; Yu X; Tong W; Luo J
    Opt Lett; 2007 May; 32(9):1023-5. PubMed ID: 17410222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber.
    Han T; Liu YG; Wang Z; Wu Z; Wang S; Li S
    Opt Express; 2012 Jun; 20(12):13320-5. PubMed ID: 22714360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis.
    Saini TS; Kumar A; Sinha RK
    Appl Opt; 2016 Mar; 55(9):2306-11. PubMed ID: 27140567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.
    Peng X; Mielke M; Booth T
    Opt Express; 2011 Jan; 19(2):923-32. PubMed ID: 21263632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2011 Jan; 19(3):1713-27. PubMed ID: 21368985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extending mode areas of single-mode all-solid photonic bandgap fibers.
    Gu G; Kong F; Hawkins TW; Jones M; Dong L
    Opt Express; 2015 Apr; 23(7):9147-56. PubMed ID: 25968749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber.
    You Y; Guo H; Hao Y; Wang Z; Liu YG
    Opt Express; 2021 Jul; 29(15):24226-24236. PubMed ID: 34614672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation on multi-core fibers with large Aeff and low micro bending loss.
    Imamura K; Tsuchida Y; Mukasa K; Sugizaki R; Saitoh K; Koshiba M
    Opt Express; 2011 May; 19(11):10595-603. PubMed ID: 21643313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. kW-level monolithic single-mode narrow-linewidth all-solid photonic bandgap fiber amplifier.
    Pulford B; Holten R; Matniyaz T; Kalichevsky-Dong MT; Hawkins TW; Dong L
    Opt Lett; 2021 Sep; 46(18):4458-4461. PubMed ID: 34525021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Few-moded ultralarge mode area chalcogenide photonic crystal fiber for mid-infrared high power applications.
    Feng X; Ren H; Xu F; Shi J; Qi S; Hu Y; Tang J; Han F; Shen D; Yang Z
    Opt Express; 2020 May; 28(11):16658-16672. PubMed ID: 32549484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photonic bandgap Bragg fiber sensors for bending/displacement detection.
    Qu H; Brastaviceanu T; Bergeron F; Olesik J; Pavlov I; Ishigure T; Skorobogatiy M
    Appl Opt; 2013 Sep; 52(25):6344-9. PubMed ID: 24085096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient 240W single-mode 1018nm laser from an Ytterbium-doped 50/400µm all-solid photonic bandgap fiber.
    Kong F; Gu G; Hawkins TW; Jones M; Parsons J; Kalichevsky-Dong MT; Palese SP; Cheung E; Dong L
    Opt Express; 2018 Feb; 26(3):3138-3144. PubMed ID: 29401845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.