These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22772229)

  • 1. Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit.
    Raghunathan SB; Gan CH; van Dijk T; Ea Kim B; Schouten HF; Ubachs W; Lalanne P; Visser TD
    Opt Express; 2012 Jul; 20(14):15326-35. PubMed ID: 22772229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic beam steering from a subwavelength slit by selective excitation of guided modes.
    Raghunathan SB; Schouten HF; Ubachs W; Kim BE; Gan CH; Visser TD
    Phys Rev Lett; 2013 Oct; 111(15):153901. PubMed ID: 24160601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering.
    Mehfuz R; Maqsood MW; Chau KJ
    Opt Express; 2010 Aug; 18(17):18206-16. PubMed ID: 20721210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic control of optical transmission through a nano-slit using surface plasmons.
    Daniel S; Saastamoinen K; Saastamoinen T; Rahomäki J; Friberg AT; Visser TD
    Opt Express; 2015 Aug; 23(17):22512-9. PubMed ID: 26368218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation control of long-range surface plasmons by two incident beams.
    Miyata M; Takahara J
    Opt Express; 2012 Apr; 20(9):9493-500. PubMed ID: 22535040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of enhanced transmission for s-polarized light through a subwavelength slit.
    Guillaumée M; Nikitin AY; Klein MJ; Dunbar LA; Spassov V; Eckert R; Martín-Moreno L; García-Vidal FJ; Stanley RP
    Opt Express; 2010 Apr; 18(9):9722-7. PubMed ID: 20588821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface plasmons on spectral switching of polychromatic light with Au-double-slit.
    Verma M; Joshi S; Bisht NS; Kandpal HC; Senthilkumaran P; Joseph J
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):195-9. PubMed ID: 22472747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer.
    König T; Santer S
    Nanotechnology; 2012 Dec; 23(48):485304. PubMed ID: 23124330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit.
    Maqsood MW; Mehfuz R; Chau KJ
    Opt Express; 2010 Oct; 18(21):21669-77. PubMed ID: 20941066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable beaming from a nanoslit with metallic gratings controlled by the phase difference between incident beams.
    Kim K; Lee SY; Yun H; Park JB; Lee B
    Opt Express; 2014 Mar; 22(5):5465-73. PubMed ID: 24663887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing.
    Renger J; Quidant R; van Hulst N; Palomba S; Novotny L
    Phys Rev Lett; 2009 Dec; 103(26):266802. PubMed ID: 20366329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams.
    Kuo CF; Chu SC
    Opt Express; 2017 May; 25(9):10456-10463. PubMed ID: 28468417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive label-free biosensors by using gap plasmons in gold nanoslits.
    Lee KL; Wang WS; Wei PK
    Biosens Bioelectron; 2008 Oct; 24(2):210-5. PubMed ID: 18499430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfect coupling of light to surface plasmons with ultra-narrow linewidths.
    Sukharev M; Sievert PR; Seideman T; Ketterson JB
    J Chem Phys; 2009 Jul; 131(3):034708. PubMed ID: 19624222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure-mediated launching and detection of 2D surface plasmons.
    Day JK; Neumann O; Grady NK; Halas NJ
    ACS Nano; 2010 Dec; 4(12):7566-72. PubMed ID: 21090584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation of surface plasmons by finite width beams.
    Kou EF; Tamir T
    Appl Opt; 1989 Mar; 28(6):1169-77. PubMed ID: 20548637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of air/metal and substrate/metal surface plasmon polaritons in Au slit arrays fabricated on quartz substrate.
    Kim SH; Lee CM; Ahn KJ; Yee KJ
    Opt Express; 2013 Sep; 21(19):21871-8. PubMed ID: 24104079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color plasmons and trains of plasmons.
    Dyankov G; Sekkat Z; Bousmina M
    Appl Opt; 2010 Aug; 49(22):4304-9. PubMed ID: 20676187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission of light through a periodic array of slits in a thick metallic film.
    Xie Y; Zakharian A; Moloney J; Mansuripur M
    Opt Express; 2005 Jun; 13(12):4485-91. PubMed ID: 19495363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.