These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22772240)

  • 1. Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube.
    Woo JH; Choi E; Kang B; Kim ES; Kim J; Lee YU; Hong TY; Kim JH; Lee I; Lee YH; Wu JW
    Opt Express; 2012 Jul; 20(14):15440-51. PubMed ID: 22772240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
    Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E
    Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sharp Fano resonances in THz metamaterials.
    Singh R; Al-Naib IA; Koch M; Zhang W
    Opt Express; 2011 Mar; 19(7):6312-9. PubMed ID: 21451657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of alignment on a liquid crystal/split-ring resonator metasurface.
    Atorf B; Mühlenbernd H; Muldarisnur M; Zentgraf T; Kitzerow H
    Chemphyschem; 2014 May; 15(7):1470-6. PubMed ID: 24481628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances.
    Al-Naib I; Hebestreit E; Rockstuhl C; Lederer F; Christodoulides D; Ozaki T; Morandotti R
    Phys Rev Lett; 2014 May; 112(18):183903. PubMed ID: 24856698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THz near-field Faraday imaging in hybrid metamaterials.
    Kumar N; Strikwerda AC; Fan K; Zhang X; Averitt RD; Planken PC; Adam AJ
    Opt Express; 2012 May; 20(10):11277-87. PubMed ID: 22565750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials.
    Li S; Nugraha PS; Su X; Chen X; Yang Q; Unferdorben M; Kovács F; Kunsági-Máté S; Liu M; Zhang X; Ouyang C; Li Y; Fülöp JA; Han J; Zhang W
    Opt Express; 2019 Feb; 27(3):2317-2326. PubMed ID: 30732270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterials.
    Wang R; Xu W; Chen D; Zhou R; Wang Q; Gao W; Kono J; Xie L; Ying Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40629-40634. PubMed ID: 32805801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of mutual electric and magnetic couplings between three-dimensional split-ring resonators.
    Chen YH; Chen CC; Ishikawa A; Shiao MH; Lin YS; Hsiao CN; Chiang HP; Tanaka T
    Opt Express; 2017 Feb; 25(3):2909-2917. PubMed ID: 29519007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid tunable THz metadevice using a high birefringence liquid crystal.
    Chikhi N; Lisitskiy M; Papari G; Tkachenko V; Andreone A
    Sci Rep; 2016 Oct; 6():34536. PubMed ID: 27708395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional THz lumped-circuit resonators.
    Todorov Y; Desfond P; Belacel C; Becerra L; Sirtori C
    Opt Express; 2015 Jun; 23(13):16838-45. PubMed ID: 26191695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-anisotropic Fano resonance in three-dimensional metamaterials.
    Moritake Y; Tanaka T
    Sci Rep; 2018 Jun; 8(1):9012. PubMed ID: 29899415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.
    Prinz VY; Naumova EV; Golod SV; Seleznev VA; Bocharov AA; Kubarev VV
    Sci Rep; 2017 Mar; 7():43334. PubMed ID: 28256587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials.
    Meng Q; Zhong Z; Zhang B
    Sci Rep; 2017 Mar; 7():45708. PubMed ID: 28358357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays.
    Sersic I; Frimmer M; Verhagen E; Koenderink AF
    Phys Rev Lett; 2009 Nov; 103(21):213902. PubMed ID: 20366039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces.
    Liu Z; Huang CY; Liu H; Zhang X; Lee C
    Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong coupling between nanoscale metamaterials and phonons.
    Shelton DJ; Brener I; Ginn JC; Sinclair MB; Peters DW; Coffey KR; Boreman GD
    Nano Lett; 2011 May; 11(5):2104-8. PubMed ID: 21462937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-field optical experiments on low-symmetry split-ring-resonator arrays.
    Diessel D; Decker M; Linden S; Wegener M
    Opt Lett; 2010 Nov; 35(21):3661-3. PubMed ID: 21042383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.