These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra. Chen JR; Numata K; Wu ST Opt Express; 2014 Oct; 22(21):26055-75. PubMed ID: 25401639 [TBL] [Abstract][Full Text] [Related]
3. Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar. Riris H; Numata K; Li S; Wu S; Ramanathan A; Dawsey M; Mao J; Kawa R; Abshire JB Appl Opt; 2012 Dec; 51(34):8296-305. PubMed ID: 23207402 [TBL] [Abstract][Full Text] [Related]
4. Double-pulse 1.57 μm integrated path differential absorption lidar ground validation for atmospheric carbon dioxide measurement. Du J; Zhu Y; Li S; Zhang J; Sun Y; Zang H; Liu D; Ma X; Bi D; Liu J; Zhu X; Chen W Appl Opt; 2017 Sep; 56(25):7053-7058. PubMed ID: 29048004 [TBL] [Abstract][Full Text] [Related]
5. Differential absorption lidar technique for measurement of the atmospheric pressure profile. Korb CL; Weng CY Appl Opt; 1983 Dec; 22(23):3759-70. PubMed ID: 20407527 [TBL] [Abstract][Full Text] [Related]
6. Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar. Abshire JB; Riris H; Weaver CJ; Mao J; Allan GR; Hasselbrack WE; Browell EV Appl Opt; 2013 Jul; 52(19):4446-61. PubMed ID: 23842238 [TBL] [Abstract][Full Text] [Related]
7. Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter. Milton MJ; Woods PT Appl Opt; 1987 Jul; 26(13):2598-603. PubMed ID: 20489926 [TBL] [Abstract][Full Text] [Related]
8. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements. Lin B; Ismail S; Wallace Harrison F; Browell EV; Nehrir AR; Dobler J; Moore B; Refaat T; Kooi SA Appl Opt; 2013 Oct; 52(29):7062-77. PubMed ID: 24217721 [TBL] [Abstract][Full Text] [Related]
9. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. Higdon NS; Browell EV; Ponsardin P; Grossmann BE; Butler CF; Chyba TH; Mayo MN; Allen RJ; Heuser AW; Grant WB; Ismail S; Mayor SD; Carter AF Appl Opt; 1994 Sep; 33(27):6422-38. PubMed ID: 20941181 [TBL] [Abstract][Full Text] [Related]
10. Effect of differential spectral reflectance on DIAL measurements using topographic targets. Grant WB Appl Opt; 1982 Jul; 21(13):2390-4. PubMed ID: 20396041 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements. Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204 [TBL] [Abstract][Full Text] [Related]
12. Analysis of differential absorption lidar from the space shuttle. Remsberg EE; Gordley LL Appl Opt; 1978 Feb; 17(4):624-30. PubMed ID: 20197838 [TBL] [Abstract][Full Text] [Related]
13. Sensitivity analysis and correction algorithms for atmospheric CO Zhu Y; Liu J; Chen X; Zhu X; Bi D; Chen W Opt Express; 2019 Oct; 27(22):32679-32699. PubMed ID: 31684476 [TBL] [Abstract][Full Text] [Related]
14. Technique for correcting effects of long CO(2) laser pulses in aerosol-backscattered coherent lidar returns. Zhao Y; Hardesty RM Appl Opt; 1988 Jul; 27(13):2719-29. PubMed ID: 20531828 [TBL] [Abstract][Full Text] [Related]
15. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements. Vaidyanathan M; Killinger DK Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985 [TBL] [Abstract][Full Text] [Related]
16. Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite. Kameyama S; Imaki M; Hirano Y; Ueno S; Kawakami S; Sakaizawa D; Kimura T; Nakajima M Appl Opt; 2011 May; 50(14):2055-68. PubMed ID: 21556107 [TBL] [Abstract][Full Text] [Related]
17. An a posteriori method based on photo-acoustic cell information to correct for lidar transmitter spectral shift: application to atmospheric CO(2) differential absorption lidar measurements. Gibert F; Marnas F; Edouart D; Flamant PH Appl Spectrosc; 2007 Oct; 61(10):1068-75. PubMed ID: 17958957 [TBL] [Abstract][Full Text] [Related]
18. Airborne atmospheric carbon dioxide measurement using 1.5 µm laser double-pulse IPDA lidar over a desert area. Fan C; Yang J; Liu J; Bu L; Wang Q; Wei C; Zhang Y; Zhu X; Li S; Zang H; Chen W Appl Opt; 2024 Mar; 63(9):2121-2131. PubMed ID: 38568563 [TBL] [Abstract][Full Text] [Related]
19. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra. Chen JR; Numata K; Wu ST Opt Express; 2015 Feb; 23(3):2660-75. PubMed ID: 25836129 [TBL] [Abstract][Full Text] [Related]
20. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements. Ben-David A; Emery SL; Gotoff SW; D'Amico FM Appl Opt; 1992 Jul; 31(21):4224-32. PubMed ID: 20725406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]