These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 22772257)

  • 21. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.
    Yin X; Li X; Zhao L; Fang Z
    Appl Opt; 2009 Nov; 48(32):6088-98. PubMed ID: 19904304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy.
    Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C
    Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.
    Gousset S; Petit C; Michau V; Fusco T; Robert C
    Appl Opt; 2015 Dec; 54(34):10163-76. PubMed ID: 26836674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor.
    Imperato S; Harms F; Hubert A; Mercier M; Bourdieu L; Fragola A
    Opt Express; 2022 Apr; 30(9):15250-15265. PubMed ID: 35473251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system.
    Li C; Xian H; Rao C; Jiang W
    Opt Lett; 2006 Oct; 31(19):2821-3. PubMed ID: 16969389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random generation of the turbulence slopes of a Shack-Hartmann wavefront sensor.
    Conan R
    Opt Lett; 2014 Mar; 39(6):1390-3. PubMed ID: 24690795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source.
    Lee JS; Yang HS; Hahn JW
    Appl Opt; 2007 Mar; 46(9):1411-5. PubMed ID: 17334430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weighted Fried reconstructor and spatial-frequency response optimization of Shack-Hartmann wavefront sensing.
    Li T; Gong M; Huang L; Qiu Y; Xue Q
    Appl Opt; 2012 Oct; 51(29):7115-23. PubMed ID: 23052093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope.
    Vorontsov M; Riker J; Carhart G; Gudimetla VS; Beresnev L; Weyrauch T; Roberts LC
    Appl Opt; 2009 Jan; 48(1):A47-57. PubMed ID: 19107154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing turbulence profile layers through celestial single-source observations.
    Laidlaw DJ; Reeves AP; Singhal H; Calvo RM
    Appl Opt; 2022 Jan; 61(2):498-504. PubMed ID: 35200889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor.
    Tuohy S; Podoleanu AG
    Opt Express; 2010 Feb; 18(4):3458-76. PubMed ID: 20389356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of wavefront sensor models for simulation of adaptive optics.
    Wu Z; Enmark A; Owner-Petersen M; Andersen T
    Opt Express; 2009 Oct; 17(22):20575-83. PubMed ID: 19997286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the transmitted near-infrared wavefront error for the GRAVITY/VLTI Coudé Infrared Adaptive Optics System.
    Yang P; Hippler S; Deen CP; Brandner W; Clénet Y; Henning T; Huber A; Kendrew S; Lenzen R; Pfuhl O; Zhu J
    Opt Express; 2013 Apr; 21(7):9069-80. PubMed ID: 23571996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors.
    Robert C; Conan JM; Gratadour D; Schreiber L; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A201-15. PubMed ID: 21045881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-speed Shack-Hartmann wavefront sensor design with commercial off-the-shelf optics.
    Widiker JJ; Harris SR; Duncan BD
    Appl Opt; 2006 Jan; 45(2):383-95. PubMed ID: 16422170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive optics technique to overcome the turbulence in a large-aperture collimator.
    Mu Q; Cao Z; Li D; Hu L; Xuan L
    Appl Opt; 2008 Mar; 47(9):1298-301. PubMed ID: 18709077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.