BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 22772290)

  • 1. Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium.
    Akamatsu D; Nakajima Y; Inaba H; Hosaka K; Yasuda M; Onae A; Hong FL
    Opt Express; 2012 Jul; 20(14):16010-6. PubMed ID: 22772290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser.
    Kim EB; Lee WK; Park CY; Yu DH; Park SE
    Opt Express; 2010 May; 18(10):10308-14. PubMed ID: 20588885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control.
    Iwakuni K; Inaba H; Nakajima Y; Kobayashi T; Hosaka K; Onae A; Hong FL
    Opt Express; 2012 Jun; 20(13):13769-76. PubMed ID: 22714442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.
    Diao W; He J; Liu Z; Yang B; Wang J
    Opt Express; 2012 Mar; 20(7):7480-7. PubMed ID: 22453427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon.
    Davila-Rodriguez J; Bagnell K; Delfyett PJ
    Opt Lett; 2013 Sep; 38(18):3665-8. PubMed ID: 24104841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct phase-locking of a Ti:Sapphire optical frequency comb to a remote optical frequency standard.
    Chae E; Nakashima K; Ikeda T; Sugiyama K; Yoshioka K
    Opt Express; 2019 May; 27(11):15649-15661. PubMed ID: 31163759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octave-spanning optical frequency comb based on a laser-diode pumped Kerr-lens mode-locked Yb:KYW laser for optical frequency measurement.
    Mitaki M; Sugiyama K; Kitano M
    Appl Opt; 2018 Jun; 57(18):5150-5160. PubMed ID: 30117977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser sources for precision spectroscopy on atomic strontium.
    Poli N; Ferrari G; Prevedelli M; Sorrentino F; Drullinger RE; Tino GM
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):981-6. PubMed ID: 16527534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti:sapphire laser seeded by a phase-modulated single-frequency fiber laser.
    Brandl MF; Mücke OD
    Opt Lett; 2010 Dec; 35(24):4223-5. PubMed ID: 21165144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback.
    Zhao Y; Peng Y; Yang T; Li Y; Wang Q; Meng F; Cao J; Fang Z; Li T; Zang E
    Opt Lett; 2011 Jan; 36(1):34-6. PubMed ID: 21209678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb.
    Fortier TM; Coq YL; Stalnaker JE; Ortega D; Diddams SA; Oates CW; Hollberg L
    Phys Rev Lett; 2006 Oct; 97(16):163905. PubMed ID: 17155398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity.
    Lewoczko-Adamczyk W; Pyrlik C; Häger J; Schwertfeger S; Wicht A; Peters A; Erbert G; Tränkle G
    Opt Express; 2015 Apr; 23(8):9705-9. PubMed ID: 25969008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity.
    Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M
    Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow-linewidth light source for a coherent Raman transfer of ultracold molecules.
    Aikawa K; Kobayashi J; Oasa K; Kishimoto T; Ueda M; Inouye S
    Opt Express; 2011 Jul; 19(15):14479-86. PubMed ID: 21934810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth.
    Jang H; Kim BS; Chun BJ; Kang HJ; Jang YS; Kim YW; Kim YJ; Kim SW
    Sci Rep; 2019 May; 9(1):7652. PubMed ID: 31113990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent narrow-linewidth optical frequency synthesis across the optical telecommunication band.
    Yang H; Zhang S; Zhao W; Zhang L
    Appl Opt; 2020 Jun; 59(16):4865-4871. PubMed ID: 32543480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation-free optical locking of an external-cavity diode laser to a filter cavity.
    Hayasaka K
    Opt Lett; 2011 Jun; 36(12):2188-90. PubMed ID: 21685962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-bandwidth phase lock between a CW laser and a frequency comb based on a feed-forward configuration.
    Sala T; Gatti D; Gambetta A; Coluccelli N; Galzerano G; Laporta P; Marangoni M
    Opt Lett; 2012 Jul; 37(13):2592-4. PubMed ID: 22743465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the linewidth of a diode laser below 30 Hz by stabilization to a reference cavity with a finesse above 10(5).
    Schoof A; Grünert J; Ritter S; Hemmerich A
    Opt Lett; 2001 Oct; 26(20):1562-4. PubMed ID: 18049663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.