These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22772374)

  • 1. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
    Dangi S; Orsborn AL; Moorman HG; Carmena JM
    Neural Comput; 2013 Jul; 25(7):1693-731. PubMed ID: 23607558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic trajectory decoding using motor cortical ensembles.
    Fagg AH; Ojakangas GW; Miller LE; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):487-96. PubMed ID: 19666343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-machine interface control using broadband spectral power from local field potentials.
    Dangi S; So K; Orsborn AL; Gastpar MC; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():285-8. PubMed ID: 24109680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
    Shanechi MM; Orsborn AL; Carmena JM
    PLoS Comput Biol; 2016 Apr; 12(4):e1004730. PubMed ID: 27035820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
    Suminski AJ; Willett FR; Fagg AH; Bodenhamer M; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5802-6. PubMed ID: 22255659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface.
    Sanchez JC; Erdogmus D; Nicolelis MA; Wessberg J; Principe JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):213-9. PubMed ID: 16003902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of a brain-computer interface without spike sorting.
    Fraser GW; Chase SM; Whitford A; Schwartz AB
    J Neural Eng; 2009 Oct; 6(5):055004. PubMed ID: 19721186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control.
    Orsborn AL; Moorman HG; Overduin SA; Shanechi MM; Dimitrov DF; Carmena JM
    Neuron; 2014 Jun; 82(6):1380-93. PubMed ID: 24945777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback-controlled parallel point process filter for estimation of goal-directed movements from neural signals.
    Shanechi MM; Wornell GW; Williams ZM; Brown EN
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):129-40. PubMed ID: 23047892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.
    Sachs NA; Ruiz-Torres R; Perreault EJ; Miller LE
    J Neural Eng; 2016 Feb; 13(1):016009. PubMed ID: 26655766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback control policies employed by people using intracortical brain-computer interfaces.
    Willett FR; Pandarinath C; Jarosiewicz B; Murphy BA; Memberg WD; Blabe CH; Saab J; Walter BL; Sweet JA; Miller JP; Henderson JM; Shenoy KV; Simeral JD; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2017 Feb; 14(1):016001. PubMed ID: 27900953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving quantification of functional networks with EEG inverse problem: evidence from a decoding point of view.
    Besserve M; Martinerie J; Garnero L
    Neuroimage; 2011 Apr; 55(4):1536-47. PubMed ID: 21276859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitively driven brain machine control using neural signals in the parietal reach region.
    Hwang EJ; Andersen RA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3329-32. PubMed ID: 21096620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.