These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 22773059)
1. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series. Burdea GC; Cioi D; Kale A; Janes WE; Ross SA; Engsberg JR IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):165-73. PubMed ID: 22773059 [TBL] [Abstract][Full Text] [Related]
2. Ankle control and strength training for children with cerebral palsy using the Rutgers Ankle CP: a case study. Cioi D; Kale A; Burdea G; Engsberg J; Janes W; Ross S IEEE Int Conf Rehabil Robot; 2011; 2011():5975432. PubMed ID: 22275633 [TBL] [Abstract][Full Text] [Related]
3. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Sukal-Moulton T; Clancy T; Zhang LQ; Gaebler-Spira D Arch Phys Med Rehabil; 2014 Aug; 95(8):1433-40. PubMed ID: 24792141 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of robotic rehabilitation of ankle impairments in children with cerebral palsy. Wu YN; Ren Y; Hwang M; Gaebler-Spira DJ; Zhang LQ Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4481-4. PubMed ID: 21095776 [TBL] [Abstract][Full Text] [Related]
5. PedBotLab: A Novel Video Game-Based Robotic Ankle Platform Created for Therapeutic Exercise for Children With Neurological Impairments. Belschner J; Coley C; Kovelman S; Salvador T; Monfaredi R; Schladen M; Fooladi Talari H; Trujillo Rivera EA; Cleary K; Evans SH Phys Occup Ther Pediatr; 2024; 44(5):671-689. PubMed ID: 38419343 [TBL] [Abstract][Full Text] [Related]
6. Home-Based Versus Laboratory-Based Robotic Ankle Training for Children With Cerebral Palsy: A Pilot Randomized Comparative Trial. Chen K; Wu YN; Ren Y; Liu L; Gaebler-Spira D; Tankard K; Lee J; Song W; Wang M; Zhang LQ Arch Phys Med Rehabil; 2016 Aug; 97(8):1237-43. PubMed ID: 26903143 [TBL] [Abstract][Full Text] [Related]
7. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. Qiu Q; Ramirez DA; Saleh S; Fluet GG; Parikh HD; Kelly D; Adamovich SV J Neuroeng Rehabil; 2009 Nov; 6():40. PubMed ID: 19917124 [TBL] [Abstract][Full Text] [Related]
8. Increasing ankle strength to improve gait and function in children with cerebral palsy: a pilot study. Engsberg JR; Ross SA; Collins DR Pediatr Phys Ther; 2006; 18(4):266-75. PubMed ID: 17108800 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT). Ammann-Reiffer C; Bastiaenen CH; Meyer-Heim AD; van Hedel HJ BMC Pediatr; 2017 Mar; 17(1):64. PubMed ID: 28253887 [TBL] [Abstract][Full Text] [Related]
10. Intensive seated robotic training of the ankle in patients with chronic stroke differentially improves gait. Chang JL; Lin RY; Saul M; Koch PJ; Krebs HI; Volpe BT NeuroRehabilitation; 2017; 41(1):61-68. PubMed ID: 28505988 [TBL] [Abstract][Full Text] [Related]
11. Does virtual reality training using the Xbox Kinect have a positive effect on physical functioning in children with spastic cerebral palsy? A case series. Jung SH; Song SH; Kim SD; Lee K; Lee GC J Pediatr Rehabil Med; 2018; 11(2):95-101. PubMed ID: 30010148 [TBL] [Abstract][Full Text] [Related]
12. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349 [TBL] [Abstract][Full Text] [Related]
13. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Wu YN; Hwang M; Ren Y; Gaebler-Spira D; Zhang LQ Neurorehabil Neural Repair; 2011 May; 25(4):378-85. PubMed ID: 21343525 [TBL] [Abstract][Full Text] [Related]
14. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Ross SA; Engsberg JR Arch Phys Med Rehabil; 2007 Sep; 88(9):1114-20. PubMed ID: 17826455 [TBL] [Abstract][Full Text] [Related]
15. A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders. Devine TM; Alter KE; Damiano DL; Bulea TC PLoS One; 2024; 19(7):e0304087. PubMed ID: 38976710 [TBL] [Abstract][Full Text] [Related]
16. Exercise intensity levels in children with cerebral palsy while playing with an active video game console. Robert M; Ballaz L; Hart R; Lemay M Phys Ther; 2013 Aug; 93(8):1084-91. PubMed ID: 23580626 [TBL] [Abstract][Full Text] [Related]
17. Home-based tele-assisted robotic rehabilitation of joint impairments in children with cerebral palsy. Chen K; Ren Y; Gaebler-Spira D; Zhang LQ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5288-91. PubMed ID: 25571187 [TBL] [Abstract][Full Text] [Related]
18. Motor Improvement Using Motion Sensing Game Devices for Cerebral Palsy Rehabilitation. Camara Machado FR; Antunes PP; Souza JM; Santos ACD; Levandowski DC; Oliveira AA J Mot Behav; 2017; 49(3):273-280. PubMed ID: 27593342 [TBL] [Abstract][Full Text] [Related]
19. [Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy]. Wang RL; Zhou ZH; Xi YC; Wang QN; Wang NH; Huang Z Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):207-212. PubMed ID: 29643516 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of school-based computer-assisted robotic gaming technology for upper limb rehabilitation of children with cerebral palsy. Preston N; Weightman A; Gallagher J; Holt R; Clarke M; Mon-Williams M; Levesley M; Bhakta B Disabil Rehabil Assist Technol; 2016; 11(4):281-8. PubMed ID: 24964205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]